Guru, Partner, or Pencil Sharpener? Understanding Designers' Attitudes
Towards Intelligent Creativity Support Tools
- URL: http://arxiv.org/abs/2007.04848v1
- Date: Thu, 9 Jul 2020 14:52:52 GMT
- Title: Guru, Partner, or Pencil Sharpener? Understanding Designers' Attitudes
Towards Intelligent Creativity Support Tools
- Authors: Angus Main, Mick Grierson
- Abstract summary: Creativity Support Tools (CST) aim to enhance human creativity, but the deeply personal and subjective nature of creativity makes the design of universal support tools challenging.
Artificial Intelligence (AI) and Machine Learning (ML) techniques could provide a means of creating 'intelligent' CST which learn and adapt to personal styles of creativity.
This paper details the results of a survey of professional designers which indicates a positive and pragmatic attitude towards collaborating with AI tools.
- Score: 4.812445272764651
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Creativity Support Tools (CST) aim to enhance human creativity, but the
deeply personal and subjective nature of creativity makes the design of
universal support tools challenging. Individuals develop personal approaches to
creativity, particularly in the context of commercial design where signature
styles and techniques are valuable commodities. Artificial Intelligence (AI)
and Machine Learning (ML) techniques could provide a means of creating
'intelligent' CST which learn and adapt to personal styles of creativity.
Identifying what kind of role such tools could play in the design process
requires a better understanding of designers' attitudes towards working with
AI, and their willingness to include it in their personal creative process.
This paper details the results of a survey of professional designers which
indicates a positive and pragmatic attitude towards collaborating with AI
tools, and a particular opportunity for incorporating them in the research
stages of a design project.
Related papers
- Diffusion-Based Visual Art Creation: A Survey and New Perspectives [51.522935314070416]
This survey explores the emerging realm of diffusion-based visual art creation, examining its development from both artistic and technical perspectives.
Our findings reveal how artistic requirements are transformed into technical challenges and highlight the design and application of diffusion-based methods within visual art creation.
We aim to shed light on the mechanisms through which AI systems emulate and possibly, enhance human capacities in artistic perception and creativity.
arXiv Detail & Related papers (2024-08-22T04:49:50Z) - MetaDesigner: Advancing Artistic Typography through AI-Driven, User-Centric, and Multilingual WordArt Synthesis [65.78359025027457]
MetaDesigner revolutionizes artistic typography by leveraging the strengths of Large Language Models (LLMs) to drive a design paradigm centered around user engagement.
A comprehensive feedback mechanism harnesses insights from multimodal models and user evaluations to refine and enhance the design process iteratively.
Empirical validations highlight MetaDesigner's capability to effectively serve diverse WordArt applications, consistently producing aesthetically appealing and context-sensitive results.
arXiv Detail & Related papers (2024-06-28T11:58:26Z) - What's Next? Exploring Utilization, Challenges, and Future Directions of AI-Generated Image Tools in Graphic Design [2.0616038498705858]
This study conducted semi-structured interviews with seven designers of varying experience levels to understand their current usage, challenges, and future needs for AI-generated image tools in graphic design.
As our findings suggest, AI tools serve as creative partners in design, enhancing human creativity, offering strategic insights, and fostering team collaboration and communication.
The findings provide guiding recommendations for the future development of AI-generated image tools, aimed at helping engineers optimize these tools to better meet the needs of graphic designers.
arXiv Detail & Related papers (2024-06-19T10:51:56Z) - I-Design: Personalized LLM Interior Designer [57.00412237555167]
I-Design is a personalized interior designer that allows users to generate and visualize their design goals through natural language communication.
I-Design starts with a team of large language model agents that engage in dialogues and logical reasoning with one another.
The final design is then constructed in 3D by retrieving and integrating assets from an existing object database.
arXiv Detail & Related papers (2024-04-03T16:17:53Z) - Geometric Deep Learning for Computer-Aided Design: A Survey [85.79012726689511]
This survey offers a comprehensive overview of learning-based methods in computer-aided design.
It includes similarity analysis and retrieval, 2D and 3D CAD model synthesis, and CAD generation from point clouds.
It provides a complete list of benchmark datasets and their characteristics, along with open-source codes that have propelled research in this domain.
arXiv Detail & Related papers (2024-02-27T17:11:35Z) - Can AI Be as Creative as Humans? [84.43873277557852]
We prove in theory that AI can be as creative as humans under the condition that it can properly fit the data generated by human creators.
The debate on AI's creativity is reduced into the question of its ability to fit a sufficient amount of data.
arXiv Detail & Related papers (2024-01-03T08:49:12Z) - Designing Participatory AI: Creative Professionals' Worries and
Expectations about Generative AI [8.379286663107845]
Generative AI, i.e., the group of technologies that automatically generate visual or written content based on text prompts, has undergone a leap in complexity and become widely available within just a few years.
This paper presents the results of a qualitative survey investigating how creative professionals think about generative AI.
arXiv Detail & Related papers (2023-03-15T20:57:03Z) - Exploring Challenges and Opportunities to Support Designers in Learning
to Co-create with AI-based Manufacturing Design Tools [31.685493295306387]
AI-based design tools are proliferating in professional software to assist engineering and industrial designers in complex manufacturing and design tasks.
These tools take on more agentic roles than traditional computer-aided design tools and are often portrayed as "co-creators"
To date, we know little about how engineering designers learn to work with AI-based design tools.
arXiv Detail & Related papers (2023-03-01T02:57:05Z) - Investigating Positive and Negative Qualities of Human-in-the-Loop
Optimization for Designing Interaction Techniques [55.492211642128446]
Designers reportedly struggle with design optimization tasks where they are asked to find a combination of design parameters that maximizes a given set of objectives.
Model-based computational design algorithms assist designers by generating design examples during design.
Black box methods for assistance, on the other hand, can work with any design problem.
arXiv Detail & Related papers (2022-04-15T20:40:43Z) - Design-Driven Requirements for Computationally Co-Creative Game AI
Design Tools [6.719205507619887]
We present a participatory design study that categorizes and analyzes game AI designers' goals, expectations for such tools.
We evince deep connections between game AI design and the design of co-creative tools, and present implications for future co-creativity tool research and development.
arXiv Detail & Related papers (2021-07-29T04:14:53Z) - Towards A Process Model for Co-Creating AI Experiences [16.767362787750418]
Thinking of technology as a design material is appealing to designers.
As a material, AI resists this approach because its properties emerge as part of the design process itself.
We investigate the co-creation process through a design study with 10 pairs of designers and engineers.
arXiv Detail & Related papers (2021-04-15T16:53:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.