論文の概要: Using Machine Learning to Detect Ghost Images in Automotive Radar
- arxiv url: http://arxiv.org/abs/2007.05280v1
- Date: Fri, 10 Jul 2020 09:51:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-11 21:13:51.003822
- Title: Using Machine Learning to Detect Ghost Images in Automotive Radar
- Title(参考訳): 機械学習による自動車レーダのゴースト画像の検出
- Authors: Florian Kraus, Nicolas Scheiner, Werner Ritter, Klaus Dietmayer
- Abstract要約: データ駆動機械学習アルゴリズムを適用してゴーストオブジェクトを検出する新しい手法を提案する。
我々は,現在最先端の自動車レーダ分類器を用いてゴースト物体を実物と一緒に検出できることを示す。
- 参考スコア(独自算出の注目度): 13.685321476701128
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Radar sensors are an important part of driver assistance systems and
intelligent vehicles due to their robustness against all kinds of adverse
conditions, e.g., fog, snow, rain, or even direct sunlight. This robustness is
achieved by a substantially larger wavelength compared to light-based sensors
such as cameras or lidars. As a side effect, many surfaces act like mirrors at
this wavelength, resulting in unwanted ghost detections. In this article, we
present a novel approach to detect these ghost objects by applying data-driven
machine learning algorithms. For this purpose, we use a large-scale automotive
data set with annotated ghost objects. We show that we can use a
state-of-the-art automotive radar classifier in order to detect ghost objects
alongside real objects. Furthermore, we are able to reduce the amount of false
positive detections caused by ghost images in some settings.
- Abstract(参考訳): レーダーセンサーは、霧、雪、雨、さらには直射日光など、あらゆる悪条件に対して頑丈であるため、運転支援システムやインテリジェントな車両の重要な部分である。
この堅牢性は、カメラやライダーのような光ベースのセンサーに比べてかなり大きな波長で達成されている。
副作用として、多くの表面はこの波長で鏡のように振る舞うため、望ましくないゴースト検出が生じる。
本稿では,データ駆動機械学習アルゴリズムを用いてゴーストオブジェクトを検出する手法を提案する。
この目的で、アノテーション付きゴーストオブジェクトを含む大規模な自動車用データセットを使用する。
実物体と共にゴースト物体を検出するために最先端のレーダ分類器を使用できることを示す。
さらに,一部の環境ではゴースト画像による偽陽性検出の回数を減らすことができる。
関連論文リスト
- Multi-Object Tracking based on Imaging Radar 3D Object Detection [0.13499500088995461]
本稿では,古典的追跡アルゴリズムを用いて,周囲の交通参加者を追跡する手法を提案する。
学習に基づく物体検出器はライダーとカメラのデータに適切に対応し、学習に基づく物体検出器は標準のレーダーデータ入力により劣っていることが示されている。
レーダセンサ技術の改良により、レーダの物体検出性能は大幅に改善されたが、レーダ点雲の広さによりライダーセンサに制限されている。
追跡アルゴリズムは、一貫したトラックを生成しながら、限られた検出品質を克服しなければならない。
論文 参考訳(メタデータ) (2024-06-03T05:46:23Z) - The Radar Ghost Dataset -- An Evaluation of Ghost Objects in Automotive Radar Data [12.653873936535149]
典型的な交通シナリオでは、レーダーの放射された信号に対して、さらに多くの表面が平坦に見える。
この結果、レーダー信号のマルチパス反射、いわゆるゴースト検出が生じる。
各種のゴースト検出のための詳細な手動アノテーションを用いたデータセットを提案する。
論文 参考訳(メタデータ) (2024-04-01T19:20:32Z) - ROFusion: Efficient Object Detection using Hybrid Point-wise
Radar-Optical Fusion [14.419658061805507]
本稿では,自律走行シナリオにおける物体検出のためのハイブリッドなポイントワイドレーダ・オプティカル融合手法を提案する。
このフレームワークは、マルチモーダルな特徴表現を学習するために統合されたレンジドップラースペクトルと画像の両方からの密集したコンテキスト情報から恩恵を受ける。
論文 参考訳(メタデータ) (2023-07-17T04:25:46Z) - Fewer is More: Efficient Object Detection in Large Aerial Images [59.683235514193505]
本稿では,検出者がより少ないパッチに注目するのに対して,より効率的な推論とより正確な結果を得るのに役立つObjectness Activation Network(OAN)を提案する。
OANを用いて、5つの検出器は3つの大規模な空中画像データセットで30.0%以上のスピードアップを取得する。
我々はOANをドライブシーン物体検出と4Kビデオ物体検出に拡張し,検出速度をそれぞれ112.1%,75.0%向上させた。
論文 参考訳(メタデータ) (2022-12-26T12:49:47Z) - Context-Aware Transfer Attacks for Object Detection [51.65308857232767]
本稿では,オブジェクト検出のためのコンテキスト認識攻撃を新たに生成する手法を提案する。
オブジェクトとその相対的な位置と大きさの共起をコンテキスト情報として利用することにより、ターゲットの誤分類攻撃をうまく生成できることを示す。
論文 参考訳(メタデータ) (2021-12-06T18:26:39Z) - Exploiting Playbacks in Unsupervised Domain Adaptation for 3D Object
Detection [55.12894776039135]
ディープラーニングに基づく最先端の3Dオブジェクト検出器は、有望な精度を示しているが、ドメインの慣用性に過度に適合する傾向がある。
対象領域の擬似ラベルの検出器を微調整することで,このギャップを大幅に削減する新たな学習手法を提案する。
5つの自律運転データセットにおいて、これらの擬似ラベル上の検出器を微調整することで、新しい運転環境への領域ギャップを大幅に減らすことを示す。
論文 参考訳(メタデータ) (2021-03-26T01:18:11Z) - All-Weather Object Recognition Using Radar and Infrared Sensing [1.7513645771137178]
この論文は、物体を認識するために、長波偏光赤外線(IR)画像とイメージングレーダに基づく新しいセンシング開発を探求する。
まず、偏光赤外データを用いたストークスパラメータに基づく手法を開発し、深層ニューラルネットワークを用いた車両の認識を行った。
第2に、低THzレーダセンサで捉えたパワースペクトルのみを用いて、制御されたシナリオで物体認識を行う可能性について検討した。
最後に、悪天候下で車両を検出するレーダーロバスト性を示す多くの異なる気象シナリオを備えた、"ワイルド"に新しい大規模なデータセットを作成しました。
論文 参考訳(メタデータ) (2020-10-30T14:16:39Z) - Perceiving Traffic from Aerial Images [86.994032967469]
本研究では,空中画像中の物体を検出するために,バタフライ検出器と呼ばれる物体検出手法を提案する。
UAVDT(UAVDT)とVisDrone 2019(VisDrone 2019)の2つのUAVデータセット上でButterfly Detectorを評価し、従来の最先端の手法よりも高速に動作し、かつリアルタイムに動作可能であることを示す。
論文 参考訳(メタデータ) (2020-09-16T11:37:43Z) - RadarNet: Exploiting Radar for Robust Perception of Dynamic Objects [73.80316195652493]
我々は、自動運転車の文脈における認識のためにRadarを利用する問題に取り組む。
我々は、LiDARとRadarの両方のセンサーを知覚に利用した新しいソリューションを提案する。
RadarNetと呼ばれる我々のアプローチは、ボクセルベースの早期核融合と注意に基づく後期核融合を特徴としている。
論文 参考訳(メタデータ) (2020-07-28T17:15:02Z) - CARRADA Dataset: Camera and Automotive Radar with Range-Angle-Doppler
Annotations [0.0]
距離角-ドップラーアノテーションを用いた同期カメラとレーダ記録のデータセットであるCARRADAを紹介する。
また、データセットのアノテートに使用された半自動アノテーション手法と、レーダーセマンティックセグメンテーションベースラインを提案する。
論文 参考訳(メタデータ) (2020-05-04T13:14:29Z) - Physically Realizable Adversarial Examples for LiDAR Object Detection [72.0017682322147]
本稿では,LiDAR検出器を騙すために,汎用な3次元対向物体を生成する手法を提案する。
特に,LiDAR検出器から車両を完全に隠蔽するために,車両の屋根上に対向物体を配置し,その成功率は80%であることを示した。
これは、限られたトレーニングデータから見知らぬ条件下での、より安全な自動運転への一歩だ。
論文 参考訳(メタデータ) (2020-04-01T16:11:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。