論文の概要: Improved Detection of Adversarial Images Using Deep Neural Networks
- arxiv url: http://arxiv.org/abs/2007.05573v1
- Date: Fri, 10 Jul 2020 19:02:24 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-11 22:34:27.056234
- Title: Improved Detection of Adversarial Images Using Deep Neural Networks
- Title(参考訳): ディープニューラルネットワークを用いた敵画像の検出の改善
- Authors: Yutong Gao, Yi Pan
- Abstract要約: 近年の研究では、分類タスクに使用される機械学習モデルは、敵の例に弱いことが示されている。
本稿では,逆入力を検出するための特徴マップデノゲーションという新しい手法を提案する。
逆例からなる混合データセットにおける検出性能を示す。
- 参考スコア(独自算出の注目度): 2.3993545400014873
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning techniques are immensely deployed in both industry and
academy. Recent studies indicate that machine learning models used for
classification tasks are vulnerable to adversarial examples, which limits the
usage of applications in the fields with high precision requirements. We
propose a new approach called Feature Map Denoising to detect the adversarial
inputs and show the performance of detection on the mixed dataset consisting of
adversarial examples generated by different attack algorithms, which can be
used to associate with any pre-trained DNNs at a low cost. Wiener filter is
also introduced as the denoise algorithm to the defense model, which can
further improve performance. Experimental results indicate that good accuracy
of detecting the adversarial examples can be achieved through our Feature Map
Denoising algorithm.
- Abstract(参考訳): 機械学習のテクニックは、業界とアカデミーの両方に大きく展開されている。
最近の研究では、分類タスクに使用される機械学習モデルは、精度の高い分野におけるアプリケーションの使用を制限する敵の例に弱いことが示されている。
本稿では,異なる攻撃アルゴリズムで生成した逆数例からなる混合データセットにおいて,事前学習したDNNを低コストで関連付けることが可能な特徴マップデノケーション(Feature Map Denoising)という手法を提案する。
Wienerフィルタはディフェンスモデルにデノイズアルゴリズムとして導入され、さらなる性能向上が期待できる。
実験結果から,我々の特徴マップデノケーションアルゴリズムにより,敵のサンプルを検出する精度が向上できることが示唆された。
関連論文リスト
- Understanding and Improving Training-Free AI-Generated Image Detections with Vision Foundation Models [68.90917438865078]
顔合成と編集のためのディープフェイク技術は、生成モデルに重大なリスクをもたらす。
本稿では,モデルバックボーン,タイプ,データセット間で検出性能がどう変化するかを検討する。
本稿では、顔画像のパフォーマンスを向上させるContrastive Blurと、ノイズタイプのバイアスに対処し、ドメイン間のパフォーマンスのバランスをとるMINDERを紹介する。
論文 参考訳(メタデータ) (2024-11-28T13:04:45Z) - Adversarial Examples Detection with Enhanced Image Difference Features
based on Local Histogram Equalization [20.132066800052712]
本稿では,高頻度情報強調戦略に基づく逆例検出フレームワークを提案する。
このフレームワークは、敵の例と通常の例との特徴的差異を効果的に抽出し、増幅することができる。
論文 参考訳(メタデータ) (2023-05-08T03:14:01Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
本研究では,フレーバータグ付けアルゴリズムの脆弱性について,敵攻撃による検証を行った。
シミュレーション攻撃の影響を緩和する対人訓練戦略を提案する。
論文 参考訳(メタデータ) (2022-03-25T19:57:19Z) - Model2Detector:Widening the Information Bottleneck for
Out-of-Distribution Detection using a Handful of Gradient Steps [12.263417500077383]
アウト・オブ・ディストリビューション検出は、長いバニラニューラルネットワークを持つ重要な機能である。
推論時間外分布検出の最近の進歩は、これらの問題のいくつかを緩和するのに役立つ。
提案手法は,一般的な画像データセットにおける検出精度において,常に最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-02-22T23:03:40Z) - Detecting Adversaries, yet Faltering to Noise? Leveraging Conditional
Variational AutoEncoders for Adversary Detection in the Presence of Noisy
Images [0.7734726150561086]
条件変分オートエンコーダ(CVAE)は、知覚不能な画像摂動を検出するのに驚くほど優れている。
画像分類ネットワーク上での敵攻撃を検出するために,CVAEを効果的に利用する方法を示す。
論文 参考訳(メタデータ) (2021-11-28T20:36:27Z) - Improving Music Performance Assessment with Contrastive Learning [78.8942067357231]
本研究では,既存のMPAシステムを改善するための潜在的手法として,コントラスト学習について検討する。
畳み込みニューラルネットワークに適用された回帰タスクに適した重み付きコントラスト損失を導入する。
この結果から,MPA回帰タスクにおいて,コントラッシブ・ベースの手法がSoTA性能に適合し,超越できることが示唆された。
論文 参考訳(メタデータ) (2021-08-03T19:24:25Z) - Diffusion-Based Representation Learning [65.55681678004038]
教師付き信号のない表現学習を実現するために,デノナイズスコアマッチングフレームワークを拡張した。
対照的に、拡散に基づく表現学習は、デノナイジングスコアマッチング目的の新しい定式化に依存している。
同じ手法を用いて,半教師付き画像分類における最先端モデルの改善を実現する無限次元潜在符号の学習を提案する。
論文 参考訳(メタデータ) (2021-05-29T09:26:02Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - Evolving Deep Convolutional Neural Networks for Hyperspectral Image
Denoising [6.869192200282213]
本稿では,HSIを効果的に識別する最適な畳み込みニューラルネットワーク(CNN)を自動構築する新しいアルゴリズムを提案する。
提案アルゴリズムの実験は、最先端の競合相手とよく設計され比較されている。
論文 参考訳(メタデータ) (2020-08-15T03:04:11Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
本稿では,ベイズ最適化手法を用いた効果的な異常検出フレームワークを提案する。
ISCX 2012データセットを用いて検討したアルゴリズムの性能を評価する。
実験結果から, 精度, 精度, 低コストアラームレート, リコールの観点から, 提案手法の有効性が示された。
論文 参考訳(メタデータ) (2020-08-05T19:29:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。