論文の概要: Bayesian Deep Ensembles via the Neural Tangent Kernel
- arxiv url: http://arxiv.org/abs/2007.05864v2
- Date: Sat, 24 Oct 2020 16:51:14 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-11 13:06:59.123389
- Title: Bayesian Deep Ensembles via the Neural Tangent Kernel
- Title(参考訳): ニューラル・タンジェント・カーネルによるベイズ深層アンサンブル
- Authors: Bobby He, Balaji Lakshminarayanan and Yee Whye Teh
- Abstract要約: 我々は、ニューラルタンジェントカーネル(NTK)のレンズを通して、ディープアンサンブルとガウス過程(GP)の関連を探索する。
そこで本研究では,各アンサンブルメンバーに対して,計算可能でランダム化され,訓練不能な関数を追加することで,標準的なディープアンサンブルトレーニングに簡単な修正を加える。
我々はベイズ深部アンサンブルが無限幅極限における標準深部アンサンブルよりも保守的な予測を行うことを証明した。
- 参考スコア(独自算出の注目度): 49.569912265882124
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We explore the link between deep ensembles and Gaussian processes (GPs)
through the lens of the Neural Tangent Kernel (NTK): a recent development in
understanding the training dynamics of wide neural networks (NNs). Previous
work has shown that even in the infinite width limit, when NNs become GPs,
there is no GP posterior interpretation to a deep ensemble trained with squared
error loss. We introduce a simple modification to standard deep ensembles
training, through addition of a computationally-tractable, randomised and
untrainable function to each ensemble member, that enables a posterior
interpretation in the infinite width limit. When ensembled together, our
trained NNs give an approximation to a posterior predictive distribution, and
we prove that our Bayesian deep ensembles make more conservative predictions
than standard deep ensembles in the infinite width limit. Finally, using finite
width NNs we demonstrate that our Bayesian deep ensembles faithfully emulate
the analytic posterior predictive when available, and can outperform standard
deep ensembles in various out-of-distribution settings, for both regression and
classification tasks.
- Abstract(参考訳): 我々は,ニューラルタンジェントカーネル(NTK)のレンズを通して,ディープアンサンブルとガウス過程(GP)の関係を探究する。
これまでの研究では、NNがGPとなるときでさえ、二乗誤差損失で訓練されたディープアンサンブルに対するGP後部解釈は存在しないことが示されている。
本稿では,各アンサンブル部材に計算可能でランダム化され,訓練不能な関数を追加することで,標準深層アンサンブル訓練の簡易な修正を行い,無限幅制限の後方解釈を可能にする。
組み合わさると、訓練されたNNは後続の予測分布に近似し、ベイジアンディープアンサンブルが無限幅制限の標準ディープアンサンブルよりも保守的な予測を行うことを示す。
最後に,有限幅nnを用いて,ベイズ深層アンサンブルが利用可能な場合,解析的後方予測を忠実にエミュレートし,回帰処理と分類処理の両方において,標準深層アンサンブルを様々な分布外設定で上回ることを示した。
関連論文リスト
- Generalization of Scaled Deep ResNets in the Mean-Field Regime [55.77054255101667]
無限深度および広帯域ニューラルネットワークの限界におけるエンスケールResNetについて検討する。
この結果から,遅延学習体制を超えた深層ResNetの一般化能力に関する新たな知見が得られた。
論文 参考訳(メタデータ) (2024-03-14T21:48:00Z) - An Infinite-Width Analysis on the Jacobian-Regularised Training of a Neural Network [10.384951432591492]
深部ニューラルネットワークの無限幅限界における最近の理論的分析により、ネットワークの初期化、特徴学習、トレーニングに対する理解が深まりました。
この無限幅解析は、ディープニューラルネットワークのヤコビアンにまで拡張可能であることを示す。
我々は、広い有限ネットワークに対する理論的主張の関連性を実験的に示し、核回帰解の性質を実験的に解析し、ヤコビアン正則化の洞察を得る。
論文 参考訳(メタデータ) (2023-12-06T09:52:18Z) - Wide Neural Networks as Gaussian Processes: Lessons from Deep
Equilibrium Models [16.07760622196666]
本研究では,層間における共有重み行列を持つ無限深度ニューラルネットワークであるDeep equilibrium Model (DEQ)について検討する。
解析により,DEC層の幅が無限大に近づくにつれ,ガウス過程に収束することが明らかとなった。
注目すべきは、この収束は深さと幅の限界が交換されても成り立つことである。
論文 参考訳(メタデータ) (2023-10-16T19:00:43Z) - Feature Learning and Generalization in Deep Networks with Orthogonal Weights [1.7956122940209063]
独立なガウス分布からの数値的な重みを持つディープニューラルネットワークは臨界に調整することができる。
これらのネットワークは、ネットワークの深さとともに線形に成長する変動を示す。
行列のアンサンブルから得られるタン・アクティベーションと重みを持つ長方形のネットワークが、それに対応する事前アクティベーション・揺らぎを持つことを示す。
論文 参考訳(メタデータ) (2023-10-11T18:00:02Z) - Gradient Descent in Neural Networks as Sequential Learning in RKBS [63.011641517977644]
初期重みの有限近傍にニューラルネットワークの正確な電力系列表現を構築する。
幅にかかわらず、勾配降下によって生成されたトレーニングシーケンスは、正規化された逐次学習によって正確に複製可能であることを証明した。
論文 参考訳(メタデータ) (2023-02-01T03:18:07Z) - Deep Stable neural networks: large-width asymptotics and convergence
rates [3.0108936184913295]
NNの層上に幅が無限大になるにつれて、適切な再スケールされたディープ・スタブル・NNは安定SPに弱収束することを示す。
非三角形NNの構造のため、これは非標準問題であり、新しい自己完結型帰納的アプローチを提案する。
論文 参考訳(メタデータ) (2021-08-02T12:18:00Z) - Random Neural Networks in the Infinite Width Limit as Gaussian Processes [16.75218291152252]
本稿では、入力次元、出力次元、深さが固定された状態において、ランダムな重みとバイアスを持つ完全連結ニューラルネットワークがガウス過程に収束することを示す。
以前の研究とは異なり、収束は重みの分布と非常に一般的な非線形性に対してのみモーメント条件を仮定して示される。
論文 参考訳(メタデータ) (2021-07-04T07:00:20Z) - A Convergence Theory Towards Practical Over-parameterized Deep Neural
Networks [56.084798078072396]
ネットワーク幅と収束時間の両方で既知の理論境界を大幅に改善することにより、理論と実践のギャップを埋める一歩を踏み出します。
本研究では, サンプルサイズが2次幅で, 両者の時間対数で線形なネットワークに対して, 地球最小値への収束が保証されていることを示す。
私たちの分析と収束境界は、いつでも合理的なサイズの同等のRELUネットワークに変換できる固定アクティベーションパターンを備えたサロゲートネットワークの構築によって導出されます。
論文 参考訳(メタデータ) (2021-01-12T00:40:45Z) - Finite Versus Infinite Neural Networks: an Empirical Study [69.07049353209463]
カーネルメソッドは、完全に接続された有限幅ネットワークより優れている。
中心とアンサンブルの有限ネットワークは後続のばらつきを減らした。
重みの減衰と大きな学習率の使用は、有限ネットワークと無限ネットワークの対応を破る。
論文 参考訳(メタデータ) (2020-07-31T01:57:47Z) - On Random Kernels of Residual Architectures [93.94469470368988]
ResNets と DenseNets のニューラルタンジェントカーネル (NTK) に対して有限幅および深さ補正を導出する。
その結果,ResNetsでは,深さと幅が同時に無限大となるとNTKへの収束が生じる可能性が示唆された。
しかし、DenseNetsでは、NTKの幅が無限大になる傾向があるため、その限界への収束が保証されている。
論文 参考訳(メタデータ) (2020-01-28T16:47:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。