Augmenting Differentiable Simulators with Neural Networks to Close the
Sim2Real Gap
- URL: http://arxiv.org/abs/2007.06045v1
- Date: Sun, 12 Jul 2020 17:27:11 GMT
- Title: Augmenting Differentiable Simulators with Neural Networks to Close the
Sim2Real Gap
- Authors: Eric Heiden, David Millard, Erwin Coumans, Gaurav S. Sukhatme
- Abstract summary: We present a differentiable simulation architecture for articulated rigid-body dynamics that enables the augmentation of analytical models with neural networks at any point of the computation.
- Score: 15.1962264049463
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a differentiable simulation architecture for articulated
rigid-body dynamics that enables the augmentation of analytical models with
neural networks at any point of the computation. Through gradient-based
optimization, identification of the simulation parameters and network weights
is performed efficiently in preliminary experiments on a real-world dataset and
in sim2sim transfer applications, while poor local optima are overcome through
a random search approach.
Related papers
- A Realistic Simulation Framework for Analog/Digital Neuromorphic Architectures [73.65190161312555]
ARCANA is a spiking neural network simulator designed to account for the properties of mixed-signal neuromorphic circuits.
We show how the results obtained provide a reliable estimate of the behavior of the spiking neural network trained in software.
arXiv Detail & Related papers (2024-09-23T11:16:46Z) - Accelerate Neural Subspace-Based Reduced-Order Solver of Deformable Simulation by Lipschitz Optimization [9.364019847856714]
Reduced-order simulation is an emerging method for accelerating physical simulations with high DOFs.
We propose a method for finding optimized subspace mappings, enabling further acceleration of neural reduced-order simulations.
We demonstrate the effectiveness of our approach through general cases in both quasi-static and dynamics simulations.
arXiv Detail & Related papers (2024-09-05T12:56:03Z) - Bridging the Sim-to-Real Gap with Bayesian Inference [53.61496586090384]
We present SIM-FSVGD for learning robot dynamics from data.
We use low-fidelity physical priors to regularize the training of neural network models.
We demonstrate the effectiveness of SIM-FSVGD in bridging the sim-to-real gap on a high-performance RC racecar system.
arXiv Detail & Related papers (2024-03-25T11:29:32Z) - Near-realtime Facial Animation by Deep 3D Simulation Super-Resolution [7.14576106770047]
We present a neural network-based simulation framework that can efficiently and realistically enhance a facial performance produced by a low-cost, realtime physics-based simulation.
We use face animation as an exemplar of such a simulation domain, where creating this semantic congruence is achieved by simply dialing in the same muscle actuation controls and skeletal pose in the two simulators.
Our proposed neural network super-resolution framework generalizes from this training set to unseen expressions, compensates for modeling discrepancies between the two simulations due to limited resolution or cost-cutting approximations in the real-time variant, and does not require any semantic descriptors or parameters to
arXiv Detail & Related papers (2023-05-05T00:09:24Z) - Neural Posterior Estimation with Differentiable Simulators [58.720142291102135]
We present a new method to perform Neural Posterior Estimation (NPE) with a differentiable simulator.
We demonstrate how gradient information helps constrain the shape of the posterior and improves sample-efficiency.
arXiv Detail & Related papers (2022-07-12T16:08:04Z) - Predicting Loose-Fitting Garment Deformations Using Bone-Driven Motion
Networks [63.596602299263935]
We present a learning algorithm that uses bone-driven motion networks to predict the deformation of loose-fitting garment meshes at interactive rates.
We show that our method outperforms state-of-the-art methods in terms of prediction accuracy of mesh deformations by about 20% in RMSE and 10% in Hausdorff distance and STED.
arXiv Detail & Related papers (2022-05-03T07:54:39Z) - Deep Bayesian Active Learning for Accelerating Stochastic Simulation [74.58219903138301]
Interactive Neural Process (INP) is a deep active learning framework for simulations and with active learning approaches.
For active learning, we propose a novel acquisition function, Latent Information Gain (LIG), calculated in the latent space of NP based models.
The results demonstrate STNP outperforms the baselines in the learning setting and LIG achieves the state-of-the-art for active learning.
arXiv Detail & Related papers (2021-06-05T01:31:51Z) - Learning Mesh-Based Simulation with Graph Networks [20.29893312074383]
We introduce MeshGraphNets, a framework for learning mesh-based simulations using graph neural networks.
Our results show it can accurately predict the dynamics of a wide range of physical systems, including aerodynamics, structural mechanics, and cloth.
arXiv Detail & Related papers (2020-10-07T13:34:49Z) - Combining Differentiable PDE Solvers and Graph Neural Networks for Fluid
Flow Prediction [79.81193813215872]
We develop a hybrid (graph) neural network that combines a traditional graph convolutional network with an embedded differentiable fluid dynamics simulator inside the network itself.
We show that we can both generalize well to new situations and benefit from the substantial speedup of neural network CFD predictions.
arXiv Detail & Related papers (2020-07-08T21:23:19Z) - Zero-Shot Reinforcement Learning with Deep Attention Convolutional
Neural Networks [12.282277258055542]
We show that a deep attention convolutional neural network (DACNN) with specific visual sensor configuration performs as well as training on a dataset with high domain and parameter variation at lower computational complexity.
Our new architecture adapts perception with respect to the control objective, resulting in zero-shot learning without pre-training a perception network.
arXiv Detail & Related papers (2020-01-02T19:41:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.