A Realistic Simulation Framework for Analog/Digital Neuromorphic Architectures
- URL: http://arxiv.org/abs/2409.14918v1
- Date: Mon, 23 Sep 2024 11:16:46 GMT
- Title: A Realistic Simulation Framework for Analog/Digital Neuromorphic Architectures
- Authors: Fernando M. Quintana, Maryada, Pedro L. Galindo, Elisa Donati, Giacomo Indiveri, Fernando Perez-Peña,
- Abstract summary: ARCANA is a spiking neural network simulator designed to account for the properties of mixed-signal neuromorphic circuits.
We show how the results obtained provide a reliable estimate of the behavior of the spiking neural network trained in software.
- Score: 73.65190161312555
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Developing dedicated neuromorphic computing platforms optimized for embedded or edge-computing applications requires time-consuming design, fabrication, and deployment of full-custom neuromorphic processors.bTo ensure that initial prototyping efforts, exploring the properties of different network architectures and parameter settings, lead to realistic results it is important to use simulation frameworks that match as best as possible the properties of the final hardware. This is particularly challenging for neuromorphic hardware platforms made using mixed-signal analog/digital circuits, due to the variability and noise sensitivity of their components. In this paper, we address this challenge by developing a software spiking neural network simulator explicitly designed to account for the properties of mixed-signal neuromorphic circuits, including device mismatch variability. The simulator, called ARCANA (A Realistic Simulation Framework for Analog/Digital Neuromorphic Architectures), is designed to reproduce the dynamics of mixed-signal synapse and neuron electronic circuits with autogradient differentiation for parameter optimization and GPU acceleration. We demonstrate the effectiveness of this approach by matching software simulation results with measurements made from an existing neuromorphic processor. We show how the results obtained provide a reliable estimate of the behavior of the spiking neural network trained in software, once deployed in hardware. This framework enables the development and innovation of new learning rules and processing architectures in neuromorphic embedded systems.
Related papers
- Neural Network Modeling of Microstructure Complexity Using Digital Libraries [1.03590082373586]
We evaluate the performance of artificial and spiking neural networks in learning and predicting fatigue crack growth and Turing pattern development.
Our assessment suggests that the leaky integrate-and-fire neuron model offers superior predictive accuracy with fewer parameters and less memory usage.
arXiv Detail & Related papers (2025-01-30T07:44:21Z) - GauSim: Registering Elastic Objects into Digital World by Gaussian Simulator [55.02281855589641]
GauSim is a novel neural network-based simulator designed to capture the dynamic behaviors of real-world elastic objects represented through Gaussian kernels.
We leverage continuum mechanics, modeling each kernel as a continuous piece of matter to account for realistic deformations without idealized assumptions.
GauSim incorporates explicit physics constraints, such as mass and momentum conservation, ensuring interpretable results and robust, physically plausible simulations.
arXiv Detail & Related papers (2024-12-23T18:58:17Z) - Integrating programmable plasticity in experiment descriptions for analog neuromorphic hardware [0.9217021281095907]
The BrainScaleS-2 neuromorphic architecture has been designed to support "hybrid" plasticity.
observables that are expensive in numerical simulation, such as per-synapse correlation measurements, are implemented directly in the synapse circuits.
We introduce an integrated framework for describing spiking neural network experiments and plasticity rules in a unified high-level experiment description language.
arXiv Detail & Related papers (2024-12-04T08:46:06Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - GPU-RANC: A CUDA Accelerated Simulation Framework for Neuromorphic Architectures [1.3401966602181168]
We introduce the GPU-based implementation of Reconfigurable Architecture for Neuromorphic Computing (RANC)
We demonstrate up to 780 times speedup compared to serial version of the RANC simulator based on a 512 neuromorphic core MNIST inference application.
arXiv Detail & Related papers (2024-04-24T21:08:21Z) - Mechanistic Design and Scaling of Hybrid Architectures [114.3129802943915]
We identify and test new hybrid architectures constructed from a variety of computational primitives.
We experimentally validate the resulting architectures via an extensive compute-optimal and a new state-optimal scaling law analysis.
We find MAD synthetics to correlate with compute-optimal perplexity, enabling accurate evaluation of new architectures.
arXiv Detail & Related papers (2024-03-26T16:33:12Z) - Convolutional Neural Generative Coding: Scaling Predictive Coding to
Natural Images [79.07468367923619]
We develop convolutional neural generative coding (Conv-NGC)
We implement a flexible neurobiologically-motivated algorithm that progressively refines latent state maps.
We study the effectiveness of our brain-inspired neural system on the tasks of reconstruction and image denoising.
arXiv Detail & Related papers (2022-11-22T06:42:41Z) - Mapping and Validating a Point Neuron Model on Intel's Neuromorphic
Hardware Loihi [77.34726150561087]
We investigate the potential of Intel's fifth generation neuromorphic chip - Loihi'
Loihi is based on the novel idea of Spiking Neural Networks (SNNs) emulating the neurons in the brain.
We find that Loihi replicates classical simulations very efficiently and scales notably well in terms of both time and energy performance as the networks get larger.
arXiv Detail & Related papers (2021-09-22T16:52:51Z) - Ultra-Low-Power FDSOI Neural Circuits for Extreme-Edge Neuromorphic
Intelligence [2.6199663901387997]
In-memory computing mixed-signal neuromorphic architectures provide promising ultra-low-power solutions for edge-computing sensory-processing applications.
We present a set of mixed-signal analog/digital circuits that exploit the features of advanced Fully-Depleted Silicon on Insulator (FDSOI) integration processes.
arXiv Detail & Related papers (2020-06-25T09:31:29Z) - Structural plasticity on an accelerated analog neuromorphic hardware
system [0.46180371154032884]
We present a strategy to achieve structural plasticity by constantly rewiring the pre- and gpostsynaptic partners.
We implemented this algorithm on the analog neuromorphic system BrainScaleS-2.
We evaluated our implementation in a simple supervised learning scenario, showing its ability to optimize the network topology.
arXiv Detail & Related papers (2019-12-27T10:15:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.