Identifying Latent Stochastic Differential Equations
- URL: http://arxiv.org/abs/2007.06075v5
- Date: Fri, 26 Nov 2021 23:41:49 GMT
- Title: Identifying Latent Stochastic Differential Equations
- Authors: Ali Hasan, Jo\~ao M. Pereira, Sina Farsiu, Vahid Tarokh
- Abstract summary: We present a method for learning latent differential equations (SDEs) from high-dimensional time series data.
The proposed method learns the mapping from ambient to latent space, and the underlying SDE coefficients, through a self-supervised learning approach.
We validate the method through several simulated video processing tasks, where the underlying SDE is known, and through real world datasets.
- Score: 29.103393300261587
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a method for learning latent stochastic differential equations
(SDEs) from high-dimensional time series data. Given a high-dimensional time
series generated from a lower dimensional latent unknown It\^o process, the
proposed method learns the mapping from ambient to latent space, and the
underlying SDE coefficients, through a self-supervised learning approach. Using
the framework of variational autoencoders, we consider a conditional generative
model for the data based on the Euler-Maruyama approximation of SDE solutions.
Furthermore, we use recent results on identifiability of latent variable models
to show that the proposed model can recover not only the underlying SDE
coefficients, but also the original latent variables, up to an isometry, in the
limit of infinite data. We validate the method through several simulated video
processing tasks, where the underlying SDE is known, and through real world
datasets.
Related papers
- A Training-Free Conditional Diffusion Model for Learning Stochastic Dynamical Systems [10.820654486318336]
This study introduces a training-free conditional diffusion model for learning unknown differential equations (SDEs) using data.
The proposed approach addresses key challenges in computational efficiency and accuracy for modeling SDEs.
The learned models exhibit significant improvements in predicting both short-term and long-term behaviors of unknown systems.
arXiv Detail & Related papers (2024-10-04T03:07:36Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
Diffusion-based generative models use differential equations to establish a smooth connection between a complex data distribution and a tractable prior distribution.
In this paper, we identify several intriguing trajectory properties in the ODE-based sampling process of diffusion models.
arXiv Detail & Related papers (2024-05-18T15:59:41Z) - Neural Stochastic Differential Equations with Change Points: A
Generative Adversarial Approach [5.408169633844698]
We propose a change point detection algorithm for time series modeled as neural SDEs.
The proposed method jointly learns the unknown change points and the parameters of distinct neural SDE models corresponding to each change point.
arXiv Detail & Related papers (2023-12-20T16:16:29Z) - Differentially Private Gradient Flow based on the Sliced Wasserstein Distance [59.1056830438845]
We introduce a novel differentially private generative modeling approach based on a gradient flow in the space of probability measures.
Experiments show that our proposed model can generate higher-fidelity data at a low privacy budget.
arXiv Detail & Related papers (2023-12-13T15:47:30Z) - Gaussian Mixture Solvers for Diffusion Models [84.83349474361204]
We introduce a novel class of SDE-based solvers called GMS for diffusion models.
Our solver outperforms numerous SDE-based solvers in terms of sample quality in image generation and stroke-based synthesis.
arXiv Detail & Related papers (2023-11-02T02:05:38Z) - Latent SDEs on Homogeneous Spaces [9.361372513858043]
We consider the problem of variational Bayesian inference in a latent variable model where a (possibly complex) observed geometric process is governed by the solution of a latent differential equation (SDE)
Experiments demonstrate that a latent SDE of the proposed type can be learned efficiently by means of an existing one-step Euler-Maruyama scheme.
arXiv Detail & Related papers (2023-06-28T14:18:52Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
We inspect the ODE-based sampling of a popular variance-exploding SDE.
We establish a theoretical relationship between the optimal ODE-based sampling and the classic mean-shift (mode-seeking) algorithm.
arXiv Detail & Related papers (2023-05-31T15:33:16Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Continuous-time stochastic gradient descent for optimizing over the
stationary distribution of stochastic differential equations [7.65995376636176]
We develop a new continuous-time gradient descent method for optimizing over the stationary distribution oficity differential equation (SDE) models.
We rigorously prove convergence of the online forward propagation algorithm for linear SDE models and present its numerical results for nonlinear examples.
arXiv Detail & Related papers (2022-02-14T11:45:22Z) - Score-based Generative Modeling of Graphs via the System of Stochastic
Differential Equations [57.15855198512551]
We propose a novel score-based generative model for graphs with a continuous-time framework.
We show that our method is able to generate molecules that lie close to the training distribution yet do not violate the chemical valency rule.
arXiv Detail & Related papers (2022-02-05T08:21:04Z) - Deep-learning of Parametric Partial Differential Equations from Sparse
and Noisy Data [2.4431531175170362]
In this work, a new framework, which combines neural network, genetic algorithm and adaptive methods, is put forward to address all of these challenges simultaneously.
A trained neural network is utilized to calculate derivatives and generate a large amount of meta-data, which solves the problem of sparse noisy data.
Next, genetic algorithm is utilized to discover the form of PDEs and corresponding coefficients with an incomplete candidate library.
A two-step adaptive method is introduced to discover parametric PDEs with spatially- or temporally-varying coefficients.
arXiv Detail & Related papers (2020-05-16T09:09:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.