Deep-learning of Parametric Partial Differential Equations from Sparse
and Noisy Data
- URL: http://arxiv.org/abs/2005.07916v1
- Date: Sat, 16 May 2020 09:09:57 GMT
- Title: Deep-learning of Parametric Partial Differential Equations from Sparse
and Noisy Data
- Authors: Hao Xu, Dongxiao Zhang, and Junsheng Zeng
- Abstract summary: In this work, a new framework, which combines neural network, genetic algorithm and adaptive methods, is put forward to address all of these challenges simultaneously.
A trained neural network is utilized to calculate derivatives and generate a large amount of meta-data, which solves the problem of sparse noisy data.
Next, genetic algorithm is utilized to discover the form of PDEs and corresponding coefficients with an incomplete candidate library.
A two-step adaptive method is introduced to discover parametric PDEs with spatially- or temporally-varying coefficients.
- Score: 2.4431531175170362
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data-driven methods have recently made great progress in the discovery of
partial differential equations (PDEs) from spatial-temporal data. However,
several challenges remain to be solved, including sparse noisy data, incomplete
candidate library, and spatially- or temporally-varying coefficients. In this
work, a new framework, which combines neural network, genetic algorithm and
adaptive methods, is put forward to address all of these challenges
simultaneously. In the framework, a trained neural network is utilized to
calculate derivatives and generate a large amount of meta-data, which solves
the problem of sparse noisy data. Next, genetic algorithm is utilized to
discover the form of PDEs and corresponding coefficients with an incomplete
candidate library. Finally, a two-step adaptive method is introduced to
discover parametric PDEs with spatially- or temporally-varying coefficients. In
this method, the structure of a parametric PDE is first discovered, and then
the general form of varying coefficients is identified. The proposed algorithm
is tested on the Burgers equation, the convection-diffusion equation, the wave
equation, and the KdV equation. The results demonstrate that this method is
robust to sparse and noisy data, and is able to discover parametric PDEs with
an incomplete candidate library.
Related papers
- Total Uncertainty Quantification in Inverse PDE Solutions Obtained with Reduced-Order Deep Learning Surrogate Models [50.90868087591973]
We propose an approximate Bayesian method for quantifying the total uncertainty in inverse PDE solutions obtained with machine learning surrogate models.
We test the proposed framework by comparing it with the iterative ensemble smoother and deep ensembling methods for a non-linear diffusion equation.
arXiv Detail & Related papers (2024-08-20T19:06:02Z) - Solving partial differential equations with sampled neural networks [1.8590821261905535]
Approximation of solutions to partial differential equations (PDE) is an important problem in computational science and engineering.
We discuss how sampling the hidden weights and biases of the ansatz network from data-agnostic and data-dependent probability distributions allows us to progress on both challenges.
arXiv Detail & Related papers (2024-05-31T14:24:39Z) - Score-based Diffusion Models in Function Space [140.792362459734]
Diffusion models have recently emerged as a powerful framework for generative modeling.
We introduce a mathematically rigorous framework called Denoising Diffusion Operators (DDOs) for training diffusion models in function space.
We show that the corresponding discretized algorithm generates accurate samples at a fixed cost independent of the data resolution.
arXiv Detail & Related papers (2023-02-14T23:50:53Z) - Message Passing Neural PDE Solvers [60.77761603258397]
We build a neural message passing solver, replacing allally designed components in the graph with backprop-optimized neural function approximators.
We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes.
We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, equation parameters, discretizations, etc., in 1D and 2D.
arXiv Detail & Related papers (2022-02-07T17:47:46Z) - An application of the splitting-up method for the computation of a
neural network representation for the solution for the filtering equations [68.8204255655161]
Filtering equations play a central role in many real-life applications, including numerical weather prediction, finance and engineering.
One of the classical approaches to approximate the solution of the filtering equations is to use a PDE inspired method, called the splitting-up method.
We combine this method with a neural network representation to produce an approximation of the unnormalised conditional distribution of the signal process.
arXiv Detail & Related papers (2022-01-10T11:01:36Z) - Manifold learning-based polynomial chaos expansions for high-dimensional
surrogate models [0.0]
We introduce a manifold learning-based method for uncertainty quantification (UQ) in describing systems.
The proposed method is able to achieve highly accurate approximations which ultimately lead to the significant acceleration of UQ tasks.
arXiv Detail & Related papers (2021-07-21T00:24:15Z) - Deep-learning based discovery of partial differential equations in
integral form from sparse and noisy data [2.745859263816099]
A new framework combining deep-learning and integral form is proposed to handle the above-mentioned problems simultaneously.
Our proposed algorithm is more robust to noise and more accurate compared with existing methods due to the utilization of integral form.
arXiv Detail & Related papers (2020-11-24T09:18:39Z) - Identifying Latent Stochastic Differential Equations [29.103393300261587]
We present a method for learning latent differential equations (SDEs) from high-dimensional time series data.
The proposed method learns the mapping from ambient to latent space, and the underlying SDE coefficients, through a self-supervised learning approach.
We validate the method through several simulated video processing tasks, where the underlying SDE is known, and through real world datasets.
arXiv Detail & Related papers (2020-07-12T19:46:31Z) - Weak SINDy For Partial Differential Equations [0.0]
We extend our Weak SINDy (WSINDy) framework to the setting of partial differential equations (PDEs)
The elimination of pointwise derivative approximations via the weak form enables effective machine-precision recovery of model coefficients from noise-free data.
We demonstrate WSINDy's robustness, speed and accuracy on several challenging PDEs.
arXiv Detail & Related papers (2020-07-06T16:03:51Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z) - The data-driven physical-based equations discovery using evolutionary
approach [77.34726150561087]
We describe the algorithm for the mathematical equations discovery from the given observations data.
The algorithm combines genetic programming with the sparse regression.
It could be used for governing analytical equation discovery as well as for partial differential equations (PDE) discovery.
arXiv Detail & Related papers (2020-04-03T17:21:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.