論文の概要: Exploring the Evolution of GANs through Quality Diversity
- arxiv url: http://arxiv.org/abs/2007.06251v1
- Date: Mon, 13 Jul 2020 08:54:52 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-10 23:33:27.157431
- Title: Exploring the Evolution of GANs through Quality Diversity
- Title(参考訳): 品質多様性によるGANの進化を探る
- Authors: Victor Costa, Nuno Louren\c{c}o, Jo\~ao Correia, Penousal Machado
- Abstract要約: 本稿では,GANの進化に品質多様性アルゴリズムを適用することを提案する。
提案手法は,従来のCOEGANモデルと,グローバルコンペティションアプローチを用いた代替バージョンとの比較を行った。
- 参考スコア(独自算出の注目度): 0.4588028371034407
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative adversarial networks (GANs) achieved relevant advances in the
field of generative algorithms, presenting high-quality results mainly in the
context of images. However, GANs are hard to train, and several aspects of the
model should be previously designed by hand to ensure training success. In this
context, evolutionary algorithms such as COEGAN were proposed to solve the
challenges in GAN training. Nevertheless, the lack of diversity and premature
optimization can be found in some of these solutions. We propose in this paper
the application of a quality-diversity algorithm in the evolution of GANs. The
solution is based on the Novelty Search with Local Competition (NSLC)
algorithm, adapting the concepts used in COEGAN to this new proposal. We
compare our proposal with the original COEGAN model and with an alternative
version using a global competition approach. The experimental results evidenced
that our proposal increases the diversity of the discovered solutions and
leverage the performance of the models found by the algorithm. Furthermore, the
global competition approach was able to consistently find better models for
GANs.
- Abstract(参考訳): GAN(Generative Adversarial Network)は、生成アルゴリズムの分野で重要な進歩を遂げ、主に画像のコンテキストにおいて高品質な結果を示す。
しかし、ganは訓練が困難であり、モデルのいくつかの側面は、トレーニングの成功を確実にするために手動で設計されるべきである。
この文脈では、COEGANのような進化的アルゴリズムがGANトレーニングの課題を解決するために提案されている。
それでも、多様性の欠如と早期最適化は、これらのソリューションのいくつかに見ることができる。
本稿では,GANの進化における品質多様性アルゴリズムの適用について述べる。
このソリューションは、この新しい提案にcoeganで使われる概念を適応させる、nslcアルゴリズムによるノベルティサーチに基づいている。
提案手法は,従来のCOEGANモデルと,グローバルコンペティションアプローチを用いた代替バージョンとの比較を行った。
実験結果から,提案手法は検出した解の多様性を増大させ,アルゴリズムによるモデルの性能を活用できることが判明した。
さらに、グローバルな競争アプローチは、GANのより良いモデルを見つけることができた。
関連論文リスト
- Diffusion Models as Network Optimizers: Explorations and Analysis [71.69869025878856]
生成拡散モデル(GDM)は,ネットワーク最適化の新しいアプローチとして期待されている。
本研究ではまず,生成モデルの本質的な特徴について考察する。
本稿では,識別的ネットワーク最適化よりも生成モデルの利点を簡潔かつ直感的に示す。
論文 参考訳(メタデータ) (2024-11-01T09:05:47Z) - Illuminating the Diversity-Fitness Trade-Off in Black-Box Optimization [9.838618121102053]
現実世界のアプリケーションでは、ユーザーは1つの高品質なソリューションよりも構造的に多様な設計選択を好むことが多い。
本稿では, この課題に対する新たな視点として, 与えられたしきい値を超えるペア距離の一定数の解を同定する問題を考察する。
論文 参考訳(メタデータ) (2024-08-29T09:55:55Z) - DiffSG: A Generative Solver for Network Optimization with Diffusion Model [75.27274046562806]
拡散生成モデルはより広い範囲の解を考えることができ、学習パラメータによるより強力な一般化を示す。
拡散生成モデルの本質的な分布学習を利用して高品質な解を学習する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-13T07:56:21Z) - Faster Optimal Coalition Structure Generation via Offline Coalition Selection and Graph-Based Search [61.08720171136229]
本稿では,3つの革新的手法のハイブリッド化に基づく問題に対する新しいアルゴリズムSMARTを提案する。
これらの2つの手法は動的プログラミングに基づいており、評価のために選択された連立関係とアルゴリズムの性能の強力な関係を示す。
我々の手法は、問題にアプローチする新しい方法と、その分野に新しいレベルの精度をもたらす。
論文 参考訳(メタデータ) (2024-07-22T23:24:03Z) - Evaluating Ensemble Methods for News Recommender Systems [50.90330146667386]
本稿では,Microsoft News データセット (MIND) において,様々な最先端アルゴリズムを組み合わさって優れた結果を得るために,アンサンブル手法をどのように利用できるかを示す。
その結果,NRSアルゴリズムの組み合わせは,基礎学習者が十分に多様であることから,個々のアルゴリズムよりも優れていることがわかった。
論文 参考訳(メタデータ) (2024-06-23T13:40:50Z) - Accelerating the Evolutionary Algorithms by Gaussian Process Regression
with $\epsilon$-greedy acquisition function [2.7716102039510564]
本稿では,最適化の収束を早めるために,エリート個人を推定する新しい手法を提案する。
我々の提案には、エリート個人を推定し、最適化の収束を加速する幅広い見通しがある。
論文 参考訳(メタデータ) (2022-10-13T07:56:47Z) - Revisiting GANs by Best-Response Constraint: Perspective, Methodology,
and Application [49.66088514485446]
ベストレスポンス制約(Best-Response Constraint、BRC)は、ジェネレータのディスクリミネータへの依存性を明示的に定式化する一般的な学習フレームワークである。
モチベーションや定式化の相違があっても, フレキシブルBRC法により, 様々なGANが一様に改善できることが示される。
論文 参考訳(メタデータ) (2022-05-20T12:42:41Z) - A Generic Approach for Enhancing GANs by Regularized Latent Optimization [79.00740660219256]
本稿では,事前学習したGANを効果的かつシームレスに拡張できる,エミュレーティブモデル推論と呼ばれる汎用フレームワークを提案する。
我々の基本的な考え方は、ワッサーシュタイン勾配流法を用いて与えられた要求に対する最適潜時分布を効率的に推算することである。
論文 参考訳(メタデータ) (2021-12-07T05:22:50Z) - Manifold Interpolation for Large-Scale Multi-Objective Optimization via
Generative Adversarial Networks [12.18471608552718]
大規模多目的最適化問題(LSMOP)は、数百から数千の決定変数と複数の矛盾する目的を含むことを特徴とする。
これまでの研究では、これらの最適解は低次元空間の多様体構造に一様に分布していることが示されている。
本研究では, 生成逆数ネットワーク(GAN)に基づく多様体フレームワークを提案し, 多様体を学習し, 高品質な解を生成する。
論文 参考訳(メタデータ) (2021-01-08T09:38:38Z) - Generative Adversarial Networks (GANs Survey): Challenges, Solutions,
and Future Directions [15.839877885431806]
Generative Adversarial Networks (GANs) は、近年注目されている深層生成モデルの新しいクラスである。
GANは、画像、オーディオ、データに対して暗黙的に複雑で高次元の分布を学習する。
GANのトレーニングには、モード崩壊、非収束、不安定といった大きな課題がある。
論文 参考訳(メタデータ) (2020-04-30T19:26:46Z) - Large Scale Many-Objective Optimization Driven by Distributional
Adversarial Networks [1.2461503242570644]
本稿では, RVEA フレームワークに基づく新しいアルゴリズムを提案し, 分散適応ネットワーク (DAN) を用いて新たな子孫を生成する。
大規模多目的問題(LSMOP)における9つのベンチマーク問題に対して,新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-03-16T04:14:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。