論文の概要: RNA-2QCFA: Evolving Two-way Quantum Finite Automata with Classical
States for RNA Secondary Structures
- arxiv url: http://arxiv.org/abs/2007.06273v1
- Date: Mon, 13 Jul 2020 09:54:09 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-11 00:35:58.030472
- Title: RNA-2QCFA: Evolving Two-way Quantum Finite Automata with Classical
States for RNA Secondary Structures
- Title(参考訳): RNA-2QCFA:RNA二次構造のための古典状態を持つ二方向量子有限オートマトン
- Authors: Amandeep Singh Bhatia, Shenggen Zheng
- Abstract要約: 量子計算モデルを用いてRNA二次生体分子構造をモデル化することは自然な目標である。
本研究の目的は,古典状態の2方向量子有限オートマトンを用いてリボ核酸 (RNA) 配列をシミュレートし,モデル化し,解析することである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, the use of mathematical methods and computer science applications
have got significant response among biochemists and biologists to modeling the
biological systems. The computational and mathematical methods have enormous
potential for modeling the deoxyribonucleic acid (DNA) and ribonucleic acid
(RNA) structures. The modeling of DNA and RNA secondary structures using
automata theory had a significant impact in the fields of computer science. It
is a natural goal to model the RNA secondary biomolecular structures using
quantum computational models. Two-way quantum finite automata with classical
states are more dominant than two-way probabilistic finite automata in language
recognition. The main objective of this paper is on using two-way quantum
finite automata with classical states to simulate, model and analyze the
ribonucleic acid (RNA) sequences.
- Abstract(参考訳): 近年, 生物学者や生物学者の間で, 数学的手法や計算機科学の応用が大きな影響を与えている。
計算および数学的手法は、デオキシリボ核酸(DNA)とリボ核酸(RNA)の構造をモデル化する大きな可能性を持っている。
オートマトン理論を用いたDNAとRNA二次構造のモデリングは、コンピュータ科学の分野に大きな影響を与えた。
量子計算モデルを用いてRNA二次生体分子構造をモデル化することは自然な目標である。
古典状態を持つ二方向量子有限オートマトンは、言語認識における二方向確率有限オートマトンよりも支配的である。
本論文の目的は,古典状態を持つ2方向量子有限オートマトンを用いてリボ核酸(rna)配列をシミュレートし,モデル化し,解析することである。
関連論文リスト
- Character-level Tokenizations as Powerful Inductive Biases for RNA Foundational Models [0.0]
RNAの挙動を理解し予測することは、RNAの構造と相互作用の複雑さのために困難である。
現在のRNAモデルは、タンパク質ドメインで観測された性能とはまだ一致していない。
ChaRNABERTは、確立されたベンチマークでいくつかのタスクで最先端のパフォーマンスに到達することができる。
論文 参考訳(メタデータ) (2024-11-05T21:56:16Z) - BEACON: Benchmark for Comprehensive RNA Tasks and Language Models [60.02663015002029]
本稿では、最初の包括的なRNAベンチマークBEACON(textbfBEnchmtextbfArk for textbfCOmprehensive RtextbfNA Task and Language Models)を紹介する。
まずBEACONは、構造解析、機能研究、工学的応用を網羅した、これまでの広範囲にわたる研究から導かれた13のタスクから構成される。
第2に、CNNのような従来のアプローチや、言語モデルに基づく高度なRNA基盤モデルなど、さまざまなモデルについて検討し、これらのモデルのタスク固有のパフォーマンスに関する貴重な洞察を提供する。
第3に、重要なRNA言語モデルコンポーネントについて検討する。
論文 参考訳(メタデータ) (2024-06-14T19:39:19Z) - Modeling Non-Covalent Interatomic Interactions on a Photonic Quantum
Computer [50.24983453990065]
我々は、cQDOモデルがフォトニック量子コンピュータ上でのシミュレーションに自然に役立っていることを示す。
我々は、XanaduのStrawberry Fieldsフォトニクスライブラリを利用して、二原子系の結合エネルギー曲線を計算する。
興味深いことに、2つの結合したボソニックQDOは安定な結合を示す。
論文 参考訳(メタデータ) (2023-06-14T14:44:12Z) - Predicting RNA Secondary Structure on Universal Quantum Computer [2.277461161767121]
RNA構造が塩基配列からどのように折り畳み、その二次構造がどのように形成されるかを知るための最初のステップである。
従来のエネルギーベースのアルゴリズムは、特に非ネスト配列の精度が低い。
普遍量子コンピューティングのためのゲートモデルアルゴリズムは利用できない。
論文 参考訳(メタデータ) (2023-05-16T15:57:38Z) - A QUBO model of the RNA folding problem optimized by variational hybrid
quantum annealing [0.0]
本稿では, 量子アニールと回路モデル量子コンピュータの両方に有効なRNA折り畳み問題のモデルを提案する。
この定式化を、既知のRNA構造に対して全てのパラメータを調整した後、現在のRNA折り畳みQUBOと比較する。
論文 参考訳(メタデータ) (2022-08-08T19:04:28Z) - Accurate Machine Learned Quantum-Mechanical Force Fields for
Biomolecular Simulations [51.68332623405432]
分子動力学(MD)シミュレーションは、化学的および生物学的プロセスに関する原子論的な洞察を可能にする。
近年,MDシミュレーションの代替手段として機械学習力場(MLFF)が出現している。
本研究は、大規模分子シミュレーションのための正確なMLFFを構築するための一般的なアプローチを提案する。
論文 参考訳(メタデータ) (2022-05-17T13:08:28Z) - Computing molecular excited states on a D-Wave quantum annealer [52.5289706853773]
分子系の励起電子状態の計算にD波量子アニールを用いることを実証する。
これらのシミュレーションは、太陽光発電、半導体技術、ナノサイエンスなど、いくつかの分野で重要な役割を果たしている。
論文 参考訳(メタデータ) (2021-07-01T01:02:17Z) - Neural representation and generation for RNA secondary structures [14.583976833366384]
我々の研究は、遺伝子マクロ分子の一種であるRNAの生成とターゲット設計に関するものである。
大規模で複雑な生物学的構造の設計は、専用のグラフベースの深層生成モデリング技術を刺激する。
本稿では,異なるRNA構造を結合して生成するフレキシブルなフレームワークを提案する。
論文 参考訳(メタデータ) (2021-02-01T15:49:25Z) - Connecting Weighted Automata, Tensor Networks and Recurrent Neural
Networks through Spectral Learning [58.14930566993063]
我々は、形式言語と言語学からの重み付き有限オートマトン(WFA)、機械学習で使用されるリカレントニューラルネットワーク、テンソルネットワークの3つのモデル間の接続を提示する。
本稿では,連続ベクトル入力の列上に定義された線形2-RNNに対する最初の証明可能な学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-10-19T15:28:00Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
本研究は、D-Wave 2000Q量子アニール上の分子電子ハミルトニアン固有値-固有ベクトル問題を解くために、一般量子アニール固有解法(QAE)アルゴリズムを実装した。
そこで本研究では,D-Waveハードウェアを用いた各種分子系における基底および電子励起状態の取得について述べる。
論文 参考訳(メタデータ) (2020-09-02T22:46:47Z) - A Quantum Finite Automata Approach to Modeling the Chemical Reactions [0.0]
量子計算モデルを用いた化学情報処理の研究は自然な目標である。
線形時間で停止する2方向量子有限オートマトンを用いた化学反応をモデル化した。
化学アクセプション/リジェクトシグネチャと量子オートマトンモデルを組み合わせることで、計算の汎用性を向上できることが証明されている。
論文 参考訳(メタデータ) (2020-07-08T09:15:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。