Embedded Encoder-Decoder in Convolutional Networks Towards Explainable
AI
- URL: http://arxiv.org/abs/2007.06712v1
- Date: Fri, 19 Jun 2020 15:49:39 GMT
- Title: Embedded Encoder-Decoder in Convolutional Networks Towards Explainable
AI
- Authors: Amirhossein Tavanaei
- Abstract summary: This paper proposes a new explainable convolutional neural network (XCNN) which represents important and driving visual features of stimuli.
The experimental results on the CIFAR-10, Tiny ImageNet, and MNIST datasets showed the success of our algorithm (XCNN) to make CNNs explainable.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding intermediate layers of a deep learning model and discovering
the driving features of stimuli have attracted much interest, recently.
Explainable artificial intelligence (XAI) provides a new way to open an AI
black box and makes a transparent and interpretable decision. This paper
proposes a new explainable convolutional neural network (XCNN) which represents
important and driving visual features of stimuli in an end-to-end model
architecture. This network employs encoder-decoder neural networks in a CNN
architecture to represent regions of interest in an image based on its
category. The proposed model is trained without localization labels and
generates a heat-map as part of the network architecture without extra
post-processing steps. The experimental results on the CIFAR-10, Tiny ImageNet,
and MNIST datasets showed the success of our algorithm (XCNN) to make CNNs
explainable. Based on visual assessment, the proposed model outperforms the
current algorithms in class-specific feature representation and interpretable
heatmap generation while providing a simple and flexible network architecture.
The initial success of this approach warrants further study to enhance weakly
supervised localization and semantic segmentation in explainable frameworks.
Related papers
- Moving Object Proposals with Deep Learned Optical Flow for Video Object
Segmentation [1.551271936792451]
We propose a state of art architecture of neural networks to get the moving object proposals (MOP)
We first train an unsupervised convolutional neural network (UnFlow) to generate optical flow estimation.
Then we render the output of optical flow net to a fully convolutional SegNet model.
arXiv Detail & Related papers (2024-02-14T01:13:55Z) - Adaptive Convolutional Dictionary Network for CT Metal Artifact
Reduction [62.691996239590125]
We propose an adaptive convolutional dictionary network (ACDNet) for metal artifact reduction.
Our ACDNet can automatically learn the prior for artifact-free CT images via training data and adaptively adjust the representation kernels for each input CT image.
Our method inherits the clear interpretability of model-based methods and maintains the powerful representation ability of learning-based methods.
arXiv Detail & Related papers (2022-05-16T06:49:36Z) - Visual Feature Encoding for GNNs on Road Networks [14.274582421372308]
We propose an architecture that combines vision backbone networks with graph neural networks.
We perform a road type classification task on an Open Street Map road network through encoding of satellite imagery.
Our architecture further enables fine-tuning and a transfer-learning approach is evaluated by pretraining.
arXiv Detail & Related papers (2022-03-02T15:37:50Z) - CondenseNeXt: An Ultra-Efficient Deep Neural Network for Embedded
Systems [0.0]
A Convolutional Neural Network (CNN) is a class of Deep Neural Network (DNN) widely used in the analysis of visual images captured by an image sensor.
In this paper, we propose a neoteric variant of deep convolutional neural network architecture to ameliorate the performance of existing CNN architectures for real-time inference on embedded systems.
arXiv Detail & Related papers (2021-12-01T18:20:52Z) - Self-Denoising Neural Networks for Few Shot Learning [66.38505903102373]
We present a new training scheme that adds noise at multiple stages of an existing neural architecture while simultaneously learning to be robust to this added noise.
This architecture, which we call a Self-Denoising Neural Network (SDNN), can be applied easily to most modern convolutional neural architectures.
arXiv Detail & Related papers (2021-10-26T03:28:36Z) - Knowledge Distillation By Sparse Representation Matching [107.87219371697063]
We propose Sparse Representation Matching (SRM) to transfer intermediate knowledge from one Convolutional Network (CNN) to another by utilizing sparse representation.
We formulate as a neural processing block, which can be efficiently optimized using gradient descent and integrated into any CNN in a plug-and-play manner.
Our experiments demonstrate that is robust to architectural differences between the teacher and student networks, and outperforms other KD techniques across several datasets.
arXiv Detail & Related papers (2021-03-31T11:47:47Z) - The Mind's Eye: Visualizing Class-Agnostic Features of CNNs [92.39082696657874]
We propose an approach to visually interpret CNN features given a set of images by creating corresponding images that depict the most informative features of a specific layer.
Our method uses a dual-objective activation and distance loss, without requiring a generator network nor modifications to the original model.
arXiv Detail & Related papers (2021-01-29T07:46:39Z) - Probabilistic Graph Attention Network with Conditional Kernels for
Pixel-Wise Prediction [158.88345945211185]
We present a novel approach that advances the state of the art on pixel-level prediction in a fundamental aspect, i.e. structured multi-scale features learning and fusion.
We propose a probabilistic graph attention network structure based on a novel Attention-Gated Conditional Random Fields (AG-CRFs) model for learning and fusing multi-scale representations in a principled manner.
arXiv Detail & Related papers (2021-01-08T04:14:29Z) - An Information-theoretic Visual Analysis Framework for Convolutional
Neural Networks [11.15523311079383]
We introduce a data model to organize the data that can be extracted from CNN models.
We then propose two ways to calculate entropy under different circumstances.
We develop a visual analysis system, CNNSlicer, to interactively explore the amount of information changes inside the model.
arXiv Detail & Related papers (2020-05-02T21:36:50Z) - Curriculum By Smoothing [52.08553521577014]
Convolutional Neural Networks (CNNs) have shown impressive performance in computer vision tasks such as image classification, detection, and segmentation.
We propose an elegant curriculum based scheme that smoothes the feature embedding of a CNN using anti-aliasing or low-pass filters.
As the amount of information in the feature maps increases during training, the network is able to progressively learn better representations of the data.
arXiv Detail & Related papers (2020-03-03T07:27:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.