CondenseNeXt: An Ultra-Efficient Deep Neural Network for Embedded
Systems
- URL: http://arxiv.org/abs/2112.00698v1
- Date: Wed, 1 Dec 2021 18:20:52 GMT
- Title: CondenseNeXt: An Ultra-Efficient Deep Neural Network for Embedded
Systems
- Authors: Priyank Kalgaonkar, Mohamed El-Sharkawy
- Abstract summary: A Convolutional Neural Network (CNN) is a class of Deep Neural Network (DNN) widely used in the analysis of visual images captured by an image sensor.
In this paper, we propose a neoteric variant of deep convolutional neural network architecture to ameliorate the performance of existing CNN architectures for real-time inference on embedded systems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to the advent of modern embedded systems and mobile devices with
constrained resources, there is a great demand for incredibly efficient deep
neural networks for machine learning purposes. There is also a growing concern
of privacy and confidentiality of user data within the general public when
their data is processed and stored in an external server which has further
fueled the need for developing such efficient neural networks for real-time
inference on local embedded systems. The scope of our work presented in this
paper is limited to image classification using a convolutional neural network.
A Convolutional Neural Network (CNN) is a class of Deep Neural Network (DNN)
widely used in the analysis of visual images captured by an image sensor,
designed to extract information and convert it into meaningful representations
for real-time inference of the input data. In this paper, we propose a neoteric
variant of deep convolutional neural network architecture to ameliorate the
performance of existing CNN architectures for real-time inference on embedded
systems. We show that this architecture, dubbed CondenseNeXt, is remarkably
efficient in comparison to the baseline neural network architecture,
CondenseNet, by reducing trainable parameters and FLOPs required to train the
network whilst maintaining a balance between the trained model size of less
than 3.0 MB and accuracy trade-off resulting in an unprecedented computational
efficiency.
Related papers
- Simultaneous Weight and Architecture Optimization for Neural Networks [6.2241272327831485]
We introduce a novel neural network training framework that transforms the process by learning architecture and parameters simultaneously with gradient descent.
Central to our approach is a multi-scale encoder-decoder, in which the encoder embeds pairs of neural networks with similar functionalities close to each other.
Experiments demonstrate that our framework can discover sparse and compact neural networks maintaining a high performance.
arXiv Detail & Related papers (2024-10-10T19:57:36Z) - EvSegSNN: Neuromorphic Semantic Segmentation for Event Data [0.6138671548064356]
EvSegSNN is a biologically plausible encoder-decoder U-shaped architecture relying on Parametric Leaky Integrate and Fire neurons.
We introduce an end-to-end biologically inspired semantic segmentation approach by combining Spiking Neural Networks with event cameras.
Experiments conducted on DDD17 demonstrate that EvSegSNN outperforms the closest state-of-the-art model in terms of MIoU.
arXiv Detail & Related papers (2024-06-20T10:36:24Z) - Variable Bitrate Neural Fields [75.24672452527795]
We present a dictionary method for compressing feature grids, reducing their memory consumption by up to 100x.
We formulate the dictionary optimization as a vector-quantized auto-decoder problem which lets us learn end-to-end discrete neural representations in a space where no direct supervision is available.
arXiv Detail & Related papers (2022-06-15T17:58:34Z) - HyBNN and FedHyBNN: (Federated) Hybrid Binary Neural Networks [0.0]
We introduce a novel hybrid neural network architecture, Hybrid Binary Neural Network (HyBNN)
HyBNN consists of a task-independent, general, full-precision variational autoencoder with a binary latent space and a task specific binary neural network.
We show that our proposed system is able to very significantly outperform a vanilla binary neural network with input binarization.
arXiv Detail & Related papers (2022-05-19T20:27:01Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
Event-based vision sensors encode local pixel-wise brightness changes in streams of events rather than image frames.
Recent progress in object recognition from event-based sensors has come from conversions of deep neural networks.
We propose a hybrid architecture for end-to-end training of deep neural networks for event-based pattern recognition and object detection.
arXiv Detail & Related papers (2021-12-06T23:45:58Z) - EffCNet: An Efficient CondenseNet for Image Classification on NXP
BlueBox [0.0]
Edge devices offer limited processing power due to their inexpensive hardware, and limited cooling and computational resources.
We propose a novel deep convolutional neural network architecture called EffCNet for edge devices.
arXiv Detail & Related papers (2021-11-28T21:32:31Z) - A novel Deep Neural Network architecture for non-linear system
identification [78.69776924618505]
We present a novel Deep Neural Network (DNN) architecture for non-linear system identification.
Inspired by fading memory systems, we introduce inductive bias (on the architecture) and regularization (on the loss function)
This architecture allows for automatic complexity selection based solely on available data.
arXiv Detail & Related papers (2021-06-06T10:06:07Z) - Learning from Event Cameras with Sparse Spiking Convolutional Neural
Networks [0.0]
Convolutional neural networks (CNNs) are now the de facto solution for computer vision problems.
We propose an end-to-end biologically inspired approach using event cameras and spiking neural networks (SNNs)
Our method enables the training of sparse spiking neural networks directly on event data, using the popular deep learning framework PyTorch.
arXiv Detail & Related papers (2021-04-26T13:52:01Z) - Binary Graph Neural Networks [69.51765073772226]
Graph Neural Networks (GNNs) have emerged as a powerful and flexible framework for representation learning on irregular data.
In this paper, we present and evaluate different strategies for the binarization of graph neural networks.
We show that through careful design of the models, and control of the training process, binary graph neural networks can be trained at only a moderate cost in accuracy on challenging benchmarks.
arXiv Detail & Related papers (2020-12-31T18:48:58Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
This paper proposes a new mean-field framework for over- parameterized deep neural networks (DNNs)
In this framework, a DNN is represented by probability measures and functions over its features in the continuous limit.
We illustrate the framework via the standard DNN and the Residual Network (Res-Net) architectures.
arXiv Detail & Related papers (2020-07-03T01:37:16Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.