論文の概要: Regularized linear autoencoders recover the principal components,
eventually
- arxiv url: http://arxiv.org/abs/2007.06731v2
- Date: Fri, 1 Oct 2021 17:42:49 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-10 23:15:49.050328
- Title: Regularized linear autoencoders recover the principal components,
eventually
- Title(参考訳): 正規化された線形オートエンコーダは、最終的に主成分を回復する
- Authors: Xuchan Bao, James Lucas, Sushant Sachdeva, Roger Grosse
- Abstract要約: 正規化を適切に訓練すると、線形オートエンコーダが最適な表現を学習できることが示される。
この収束は, 潜伏次元の増加に伴って悪化する条件条件が原因で遅くなることを示す。
勾配降下更新を簡易に修正し、経験的に大幅に高速化する。
- 参考スコア(独自算出の注目度): 15.090789983727335
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Our understanding of learning input-output relationships with neural nets has
improved rapidly in recent years, but little is known about the convergence of
the underlying representations, even in the simple case of linear autoencoders
(LAEs). We show that when trained with proper regularization, LAEs can directly
learn the optimal representation -- ordered, axis-aligned principal components.
We analyze two such regularization schemes: non-uniform $\ell_2$ regularization
and a deterministic variant of nested dropout [Rippel et al, ICML' 2014].
Though both regularization schemes converge to the optimal representation, we
show that this convergence is slow due to ill-conditioning that worsens with
increasing latent dimension. We show that the inefficiency of learning the
optimal representation is not inevitable -- we present a simple modification to
the gradient descent update that greatly speeds up convergence empirically.
- Abstract(参考訳): 近年,ニューラルネットワークによる入力-出力関係の理解は急速に向上しているが,線形オートエンコーダ(LAE)の単純な場合においても,基礎となる表現の収束についてはほとんど分かっていない。
適切な正規化で訓練すると、RAEは順序付けられた軸整列主成分の最適な表現を直接学習できることを示す。
非一様$\ell_2$正規化とネストしたドロップアウトの決定論的変種 [rippel et al, icml' 2014] を解析した。
どちらの正規化スキームも最適表現に収束するが、この収束は潜伏次元の増加に伴って悪化する条件条件のため遅い。
最適な表現を学ぶことの非効率さは避けられないことを示し、勾配降下更新に簡単な修正を加え、経験的収束を大幅にスピードアップさせる。
関連論文リスト
- Exact, Tractable Gauss-Newton Optimization in Deep Reversible Architectures Reveal Poor Generalization [52.16435732772263]
多くのアプリケーションにおいて、ディープニューラルネットワークのトレーニングを加速する2階最適化が示されている。
しかし、二階法の一般化特性についてはいまだ議論が続いている。
我々は、Gauss-Newton (GN) の正確な更新が、ディープアーキテクチャのクラスにおいて、牽引可能な形式を取ることを初めて示す。
論文 参考訳(メタデータ) (2024-11-12T17:58:40Z) - Implicit Bias and Fast Convergence Rates for Self-attention [30.08303212679308]
トランスフォーマーのコアメカニズムであるセルフアテンションは、従来のニューラルネットワークと区別し、その優れたパフォーマンスを駆動する。
固定線形復号器をバイナリに固定した自己アテンション層をトレーニングする際の勾配降下(GD)の暗黙バイアスについて検討した。
W_t$ から $W_mm$ に対する最初の有限時間収束率と、注意写像のスペーサー化率を提供する。
論文 参考訳(メタデータ) (2024-02-08T15:15:09Z) - Stable Nonconvex-Nonconcave Training via Linear Interpolation [51.668052890249726]
本稿では,ニューラルネットワークトレーニングを安定化(大規模)するための原理的手法として,線形アヘッドの理論解析を提案する。
最適化過程の不安定性は、しばしば損失ランドスケープの非単調性によって引き起こされるものであり、非拡張作用素の理論を活用することによって線型性がいかに役立つかを示す。
論文 参考訳(メタデータ) (2023-10-20T12:45:12Z) - Asymptotically Unbiased Instance-wise Regularized Partial AUC
Optimization: Theory and Algorithm [101.44676036551537]
One-way partial AUC (OPAUC) と Two-way partial AUC (TPAUC) はバイナリ分類器の平均性能を測定する。
既存の手法のほとんどはPAUCをほぼ最適化するしかなく、制御不能なバイアスにつながる。
本稿では,分散ロバスト最適化AUCによるPAUC問題の簡易化について述べる。
論文 参考訳(メタデータ) (2022-10-08T08:26:22Z) - Mitigating Performance Saturation in Neural Marked Point Processes:
Architectures and Loss Functions [50.674773358075015]
本稿では,グラフ畳み込み層のみを利用するGCHPという単純なグラフベースのネットワーク構造を提案する。
我々は,GCHPがトレーニング時間を大幅に短縮し,時間間確率仮定による確率比損失がモデル性能を大幅に改善できることを示した。
論文 参考訳(メタデータ) (2021-07-07T16:59:14Z) - On the Explicit Role of Initialization on the Convergence and Implicit
Bias of Overparametrized Linear Networks [1.0323063834827415]
勾配流下で訓練された単層線形ネットワークの新たな解析法を提案する。
正方形損失はその最適値に指数関数的に収束することを示す。
我々は、トレーニングされたネットワークとmin-norm解の間の距離に基づいて、新しい非漸近上界を導出する。
論文 参考訳(メタデータ) (2021-05-13T15:13:51Z) - Dissecting Supervised Constrastive Learning [24.984074794337157]
高容量エンコーダで構成された線形マップのソフトマックススコアよりもクロスエントロピーを最小化することは、教師付き学習タスクでニューラルネットワークを訓練するための最も一般的な選択肢である。
コントラスト目的の教師付き変種を通して等しく(あるいはそれ以上)識別表現を得るために、エンコーダを直接最適化することができることを示す。
論文 参考訳(メタデータ) (2021-02-17T15:22:38Z) - LQF: Linear Quadratic Fine-Tuning [114.3840147070712]
本稿では,非線形微調整に匹敵する性能を実現する事前学習モデルの線形化手法を提案する。
LQFはアーキテクチャの単純な変更、損失関数、そして一般的に分類に使用される最適化で構成されている。
論文 参考訳(メタデータ) (2020-12-21T06:40:20Z) - Short-Term Memory Optimization in Recurrent Neural Networks by
Autoencoder-based Initialization [79.42778415729475]
線形オートエンコーダを用いた列列の明示的暗記に基づく代替解を提案する。
このような事前学習が、長いシーケンスで難しい分類タスクを解くのにどのように役立つかを示す。
提案手法は, 長周期の復元誤差をはるかに小さくし, 微調整時の勾配伝播を良くすることを示す。
論文 参考訳(メタデータ) (2020-11-05T14:57:16Z) - Towards Understanding Label Smoothing [36.54164997035046]
ラベルスムーズな正規化(LSR)は、トレーニングアルゴリズムによるディープニューラルネットワークにおいて大きな成功を収めている。
適切なLSRが分散を減少させることで収束を加速することを示す。
本稿では,TSLA(Two-Stage LAbel smoothing algorithm)を提案する。
論文 参考訳(メタデータ) (2020-06-20T20:36:17Z) - The Implicit Bias of Gradient Descent on Separable Data [44.98410310356165]
予測器は最大マージン(シャープマージンSVM)解の方向へ収束することを示す。
これは、トレーニングエラーがゼロになった後もロジスティックまたはクロスエントロピー損失を最適化し続ける利点を説明するのに役立つ。
論文 参考訳(メタデータ) (2017-10-27T21:47:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。