Meta-rPPG: Remote Heart Rate Estimation Using a Transductive
Meta-Learner
- URL: http://arxiv.org/abs/2007.06786v1
- Date: Tue, 14 Jul 2020 03:01:46 GMT
- Title: Meta-rPPG: Remote Heart Rate Estimation Using a Transductive
Meta-Learner
- Authors: Eugene Lee, Evan Chen, Chen-Yi Lee
- Abstract summary: Remote heart rate estimation is done using remote photoplethysmography (r)
We propose a transductive meta-learner that takes unlabeled samples during testing (deployment) for a self-supervised weight adjustment.
- Score: 15.701494085639007
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Remote heart rate estimation is the measurement of heart rate without any
physical contact with the subject and is accomplished using remote
photoplethysmography (rPPG) in this work. rPPG signals are usually collected
using a video camera with a limitation of being sensitive to multiple
contributing factors, e.g. variation in skin tone, lighting condition and
facial structure. End-to-end supervised learning approach performs well when
training data is abundant, covering a distribution that doesn't deviate too
much from the distribution of testing data or during deployment. To cope with
the unforeseeable distributional changes during deployment, we propose a
transductive meta-learner that takes unlabeled samples during testing
(deployment) for a self-supervised weight adjustment (also known as
transductive inference), providing fast adaptation to the distributional
changes. Using this approach, we achieve state-of-the-art performance on
MAHNOB-HCI and UBFC-rPPG.
Related papers
- SiNC+: Adaptive Camera-Based Vitals with Unsupervised Learning of Periodic Signals [6.458510829614774]
We present the first non-contrastive unsupervised learning framework for signal regression.
We find that encouraging sparse power spectra within normal physiological bandlimits and variance over batches of power spectra is sufficient for learning periodic signals.
arXiv Detail & Related papers (2024-04-20T19:17:40Z) - Facial Video-based Remote Physiological Measurement via Self-supervised
Learning [9.99375728024877]
We introduce a novel framework that learns to estimate r signals from facial videos without the need of ground truth signals.
Negative samples are generated via a learnable frequency module, which performs nonlinear signal frequency transformation.
Next, we introduce a local r expert aggregation module to estimate r signals from augmented samples.
It encodes complementary pulsation information from different face regions and aggregate them into one r prediction.
arXiv Detail & Related papers (2022-10-27T13:03:23Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
We propose a new semi-supervised adversarial method called Patch Confidence Adrial Training (PCA) for medical image segmentation.
PCA learns the pixel structure and context information in each patch to get enough gradient feedback, which aids the discriminator in convergent to an optimal state.
Our method outperforms the state-of-the-art semi-supervised methods, which demonstrates its effectiveness for medical image segmentation.
arXiv Detail & Related papers (2022-07-24T07:45:47Z) - WPPG Net: A Non-contact Video Based Heart Rate Extraction Network
Framework with Compatible Training Capability [21.33542693986985]
Our facial skin presents subtle color change known as remote Photoplethys (r) signal, from which we could extract the heart rate of the subject.
Recently many deep learning methods and related datasets on r signal extraction are proposed.
However, because of the time consumption blood flowing through our body and other factors, label waves such as BVP signals have uncertain delays with real r signals in some datasets.
In this paper, by analyzing the common characteristics on rhythm and periodicity of r signals and label waves, we propose a whole set of training methodology which wraps these networks so that they could remain efficient when be trained at
arXiv Detail & Related papers (2022-07-04T19:52:30Z) - DDPM-CD: Denoising Diffusion Probabilistic Models as Feature Extractors
for Change Detection [31.125812018296127]
We introduce a novel approach for change detection by pre-training a Deno Diffusionising Probabilistic Model (DDPM)
DDPM learns the training data distribution by gradually converting training images into a Gaussian distribution using a Markov chain.
During inference (i.e., sampling), they can generate a diverse set of samples closer to the training distribution.
Experiments conducted on the LEVIR-CD, WHU-CD, DSIFN-CD, and CDD datasets demonstrate that the proposed DDPM-CD method significantly outperforms the existing change detection methods in terms of F1 score, I
arXiv Detail & Related papers (2022-06-23T17:58:29Z) - DLTTA: Dynamic Learning Rate for Test-time Adaptation on Cross-domain
Medical Images [56.72015587067494]
We propose a novel dynamic learning rate adjustment method for test-time adaptation, called DLTTA.
Our method achieves effective and fast test-time adaptation with consistent performance improvement over current state-of-the-art test-time adaptation methods.
arXiv Detail & Related papers (2022-05-27T02:34:32Z) - Incorporating Semi-Supervised and Positive-Unlabeled Learning for
Boosting Full Reference Image Quality Assessment [73.61888777504377]
Full-reference (FR) image quality assessment (IQA) evaluates the visual quality of a distorted image by measuring its perceptual difference with pristine-quality reference.
Unlabeled data can be easily collected from an image degradation or restoration process, making it encouraging to exploit unlabeled training data to boost FR-IQA performance.
In this paper, we suggest to incorporate semi-supervised and positive-unlabeled (PU) learning for exploiting unlabeled data while mitigating the adverse effect of outliers.
arXiv Detail & Related papers (2022-04-19T09:10:06Z) - PhysFormer: Facial Video-based Physiological Measurement with Temporal
Difference Transformer [55.936527926778695]
Recent deep learning approaches focus on mining subtle r clues using convolutional neural networks with limited-temporal receptive fields.
In this paper, we propose the PhysFormer, an end-to-end video transformer based architecture.
arXiv Detail & Related papers (2021-11-23T18:57:11Z) - The Way to my Heart is through Contrastive Learning: Remote
Photoplethysmography from Unlabelled Video [10.479541955106328]
The ability to reliably estimate physiological signals from video is a powerful tool in low-cost, pre-clinical health monitoring.
We propose a new approach to remote photoplethysmography (r) - the measurement of blood volume changes from observations of a person's face or skin.
arXiv Detail & Related papers (2021-11-18T15:21:33Z) - Distribution Mismatch Correction for Improved Robustness in Deep Neural
Networks [86.42889611784855]
normalization methods increase the vulnerability with respect to noise and input corruptions.
We propose an unsupervised non-parametric distribution correction method that adapts the activation distribution of each layer.
In our experiments, we empirically show that the proposed method effectively reduces the impact of intense image corruptions.
arXiv Detail & Related papers (2021-10-05T11:36:25Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.