Recovering Pulse Waves from Video Using Deep Unrolling and Deep Equilibrium Models
- URL: http://arxiv.org/abs/2503.17269v1
- Date: Fri, 21 Mar 2025 16:11:21 GMT
- Title: Recovering Pulse Waves from Video Using Deep Unrolling and Deep Equilibrium Models
- Authors: Vineet R Shenoy, Suhas Lohit, Hassan Mansour, Rama Chellappa, Tim K. Marks,
- Abstract summary: Camera-based monitoring of vital signs, also known as imaging photoplethysmography (i), has seen applications in driver-monitoring, affective computing, and more.<n>We introduce methods that combine signal processing and deep learning methods in an inverse problem.
- Score: 45.94962431110573
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Camera-based monitoring of vital signs, also known as imaging photoplethysmography (iPPG), has seen applications in driver-monitoring, perfusion assessment in surgical settings, affective computing, and more. iPPG involves sensing the underlying cardiac pulse from video of the skin and estimating vital signs such as the heart rate or a full pulse waveform. Some previous iPPG methods impose model-based sparse priors on the pulse signals and use iterative optimization for pulse wave recovery, while others use end-to-end black-box deep learning methods. In contrast, we introduce methods that combine signal processing and deep learning methods in an inverse problem framework. Our methods estimate the underlying pulse signal and heart rate from facial video by learning deep-network-based denoising operators that leverage deep algorithm unfolding and deep equilibrium models. Experiments show that our methods can denoise an acquired signal from the face and infer the correct underlying pulse rate, achieving state-of-the-art heart rate estimation performance on well-known benchmarks, all with less than one-fifth the number of learnable parameters as the closest competing method.
Related papers
- EchoWorld: Learning Motion-Aware World Models for Echocardiography Probe Guidance [79.66329903007869]
We present EchoWorld, a motion-aware world modeling framework for probe guidance.
It encodes anatomical knowledge and motion-induced visual dynamics.
It is trained on more than one million ultrasound images from over 200 routine scans.
arXiv Detail & Related papers (2025-04-17T16:19:05Z) - Time-Series U-Net with Recurrence for Noise-Robust Imaging Photoplethysmography [14.749406169315554]
Photoplethysmography system consists of three modules: face and landmark detection, time-series extraction, and pulse signal/pulse rate estimation.<n>The pulse signal estimation module, which we call TURNIP, allows the system to faithfully reconstruct the underlying pulse signal waveform.<n>Our algorithm provides reliable heart rate estimates without the need for specialized sensors or contact with the skin.
arXiv Detail & Related papers (2025-03-21T17:52:33Z) - Self-similarity Prior Distillation for Unsupervised Remote Physiological Measurement [39.0083078989343]
We propose a Self-Similarity Prior Distillation (SSPD) framework for unsupervised r estimation.
SSPD capitalizes on the intrinsic self-similarity of cardiac activities.
It achieves comparable or even superior performance compared to the state-of-the-art supervised methods.
arXiv Detail & Related papers (2023-11-09T02:24:51Z) - Improving Diffusion Models for ECG Imputation with an Augmented Template
Prior [43.6099225257178]
noisy and poor-quality recordings are a major issue for signals collected using mobile health systems.
Recent studies have explored the imputation of missing values in ECG with probabilistic time-series models.
We present a template-guided denoising diffusion probabilistic model (DDPM), PulseDiff, which is conditioned on an informative prior for a range of health conditions.
arXiv Detail & Related papers (2023-10-24T11:34:15Z) - Motion Magnification in Robotic Sonography: Enabling Pulsation-Aware
Artery Segmentation [44.868281669589194]
In order to improve the artery segmentation accuracy and stability during scans, this work presents a novel pulsation-assisted segmentation neural network (PAS-NN)
Motion magnification techniques are employed to amplify the subtle motion within the frequency band of interest to extract the pulsation signals from sequential US images.
The extracted real-time pulsation information can help to locate the arteries on cross-section US images.
arXiv Detail & Related papers (2023-07-07T16:14:17Z) - A Self-Supervised Algorithm for Denoising Photoplethysmography Signals
for Heart Rate Estimation from Wearables [21.086951625740824]
We develop an algorithm for denoising PPG signals that reconstructs the corrupted parts of the signal, while preserving the clean parts of the PPG signal.
Our novel framework relies on self-supervised training, where we leverage a large database of clean PPG signals to train a denoising autoencoder.
arXiv Detail & Related papers (2023-07-07T06:21:43Z) - DopUS-Net: Quality-Aware Robotic Ultrasound Imaging based on Doppler
Signal [48.97719097435527]
DopUS-Net combines the Doppler images with B-mode images to increase the segmentation accuracy and robustness of small blood vessels.
An artery re-identification module qualitatively evaluate the real-time segmentation results and automatically optimize the probe pose for enhanced Doppler images.
arXiv Detail & Related papers (2023-05-15T18:19:29Z) - A Web Application for Experimenting and Validating Remote Measurement of
Vital Signs [0.0]
Remote Photoplethysmography (r) techniques compute vital signs from facial videos.
We implemented a web application framework to measure a person's Heart Rate (HR), Heart Rate Variability (HRV), Blood Pressure (BP), and stress from face video.
The accuracy and robustness of the framework was validated with the help of volunteers.
arXiv Detail & Related papers (2022-08-21T16:07:46Z) - WPPG Net: A Non-contact Video Based Heart Rate Extraction Network
Framework with Compatible Training Capability [21.33542693986985]
Our facial skin presents subtle color change known as remote Photoplethys (r) signal, from which we could extract the heart rate of the subject.
Recently many deep learning methods and related datasets on r signal extraction are proposed.
However, because of the time consumption blood flowing through our body and other factors, label waves such as BVP signals have uncertain delays with real r signals in some datasets.
In this paper, by analyzing the common characteristics on rhythm and periodicity of r signals and label waves, we propose a whole set of training methodology which wraps these networks so that they could remain efficient when be trained at
arXiv Detail & Related papers (2022-07-04T19:52:30Z) - Identifying Rhythmic Patterns for Face Forgery Detection and
Categorization [46.21354355137544]
We propose a framework for face forgery detection and categorization consisting of: 1) a Spatial-Temporal Filtering Network (STFNet) for PPG signals, and 2) a Spatial-Temporal Interaction Network (STINet) for constraint and interaction of PPG signals.
With insight into the generation of forgery methods, we further propose intra-source and inter-source blending to boost the performance of the framework.
arXiv Detail & Related papers (2022-07-04T04:57:06Z) - DRNet: Decomposition and Reconstruction Network for Remote Physiological
Measurement [39.73408626273354]
Existing methods are generally divided into two groups.
The first focuses on mining the subtle volume pulse (BVP) signals from face videos, but seldom explicitly models the noises that dominate face video content.
The second focuses on modeling noisy data directly, resulting in suboptimal performance due to the lack of regularity of these severe random noises.
arXiv Detail & Related papers (2022-06-12T07:40:10Z) - Bayesian Restoration of Audio Degraded by Low-Frequency Pulses Modeled
via Gaussian Process [0.0]
A common defect found when reproducing old vinyl and gramophone recordings with mechanical devices is the long pulses with significant low-frequency content.
Previous approaches to their suppression on digital counterparts of the recordings depend on a prior estimation of the pulse location.
This paper proposes a novel Bayesian approach capable of jointly estimating the pulse location; interpolating the almost annihilated signal underlying the strong discontinuity that initiates the pulse; and also estimating the long pulse tail.
arXiv Detail & Related papers (2020-05-28T17:52:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.