An Uncertainty-based Human-in-the-loop System for Industrial Tool Wear
Analysis
- URL: http://arxiv.org/abs/2007.07129v2
- Date: Thu, 16 Jul 2020 09:46:42 GMT
- Title: An Uncertainty-based Human-in-the-loop System for Industrial Tool Wear
Analysis
- Authors: Alexander Treiss, Jannis Walk, Niklas K\"uhl
- Abstract summary: We show that uncertainty measures based on Monte-Carlo dropout in the context of a human-in-the-loop system increase the system's transparency and performance.
A simulation study demonstrates that the uncertainty-based human-in-the-loop system increases performance for different levels of human involvement.
- Score: 68.8204255655161
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Convolutional neural networks have shown to achieve superior performance on
image segmentation tasks. However, convolutional neural networks, operating as
black-box systems, generally do not provide a reliable measure about the
confidence of their decisions. This leads to various problems in industrial
settings, amongst others, inadequate levels of trust from users in the model's
outputs as well as a non-compliance with current policy guidelines (e.g., EU AI
Strategy). To address these issues, we use uncertainty measures based on
Monte-Carlo dropout in the context of a human-in-the-loop system to increase
the system's transparency and performance. In particular, we demonstrate the
benefits described above on a real-world multi-class image segmentation task of
wear analysis in the machining industry. Following previous work, we show that
the quality of a prediction correlates with the model's uncertainty.
Additionally, we demonstrate that a multiple linear regression using the
model's uncertainties as independent variables significantly explains the
quality of a prediction (\(R^2=0.718\)). Within the uncertainty-based
human-in-the-loop system, the multiple regression aims at identifying failed
predictions on an image-level. The system utilizes a human expert to label
these failed predictions manually. A simulation study demonstrates that the
uncertainty-based human-in-the-loop system increases performance for different
levels of human involvement in comparison to a random-based human-in-the-loop
system. To ensure generalizability, we show that the presented approach
achieves similar results on the publicly available Cityscapes dataset.
Related papers
- Ecosystem-level Analysis of Deployed Machine Learning Reveals Homogeneous Outcomes [72.13373216644021]
We study the societal impact of machine learning by considering the collection of models that are deployed in a given context.
We find deployed machine learning is prone to systemic failure, meaning some users are exclusively misclassified by all models available.
These examples demonstrate ecosystem-level analysis has unique strengths for characterizing the societal impact of machine learning.
arXiv Detail & Related papers (2023-07-12T01:11:52Z) - Modeling Uncertain Feature Representation for Domain Generalization [49.129544670700525]
We show that our method consistently improves the network generalization ability on multiple vision tasks.
Our methods are simple yet effective and can be readily integrated into networks without additional trainable parameters or loss constraints.
arXiv Detail & Related papers (2023-01-16T14:25:02Z) - Interpretable Self-Aware Neural Networks for Robust Trajectory
Prediction [50.79827516897913]
We introduce an interpretable paradigm for trajectory prediction that distributes the uncertainty among semantic concepts.
We validate our approach on real-world autonomous driving data, demonstrating superior performance over state-of-the-art baselines.
arXiv Detail & Related papers (2022-11-16T06:28:20Z) - Learning Uncertainty with Artificial Neural Networks for Improved
Predictive Process Monitoring [0.114219428942199]
We distinguish two types of learnable uncertainty: model uncertainty due to a lack of training data and noise-induced observational uncertainty.
Our contribution is to apply these uncertainty concepts to predictive process monitoring tasks to train uncertainty-based models to predict the remaining time and outcomes.
arXiv Detail & Related papers (2022-06-13T17:05:27Z) - Uncertainty Modeling for Out-of-Distribution Generalization [56.957731893992495]
We argue that the feature statistics can be properly manipulated to improve the generalization ability of deep learning models.
Common methods often consider the feature statistics as deterministic values measured from the learned features.
We improve the network generalization ability by modeling the uncertainty of domain shifts with synthesized feature statistics during training.
arXiv Detail & Related papers (2022-02-08T16:09:12Z) - MDN-VO: Estimating Visual Odometry with Confidence [34.8860186009308]
Visual Odometry (VO) is used in many applications including robotics and autonomous systems.
We propose a deep learning-based VO model to estimate 6-DoF poses, as well as a confidence model for these estimates.
Our experiments show that the proposed model exceeds state-of-the-art performance in addition to detecting failure cases.
arXiv Detail & Related papers (2021-12-23T19:26:04Z) - Interpretable Social Anchors for Human Trajectory Forecasting in Crowds [84.20437268671733]
We propose a neural network-based system to predict human trajectory in crowds.
We learn interpretable rule-based intents, and then utilise the expressibility of neural networks to model scene-specific residual.
Our architecture is tested on the interaction-centric benchmark TrajNet++.
arXiv Detail & Related papers (2021-05-07T09:22:34Z) - A comprehensive study on the prediction reliability of graph neural
networks for virtual screening [0.0]
We investigate the effects of model architectures, regularization methods, and loss functions on the prediction performance and reliability of classification results.
Our result highlights that correct choice of regularization and inference methods is evidently important to achieve high success rate.
arXiv Detail & Related papers (2020-03-17T10:13:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.