Conformal uncertainty quantification to evaluate predictive fairness of foundation AI model for skin lesion classes across patient demographics
- URL: http://arxiv.org/abs/2503.23819v1
- Date: Mon, 31 Mar 2025 08:06:00 GMT
- Title: Conformal uncertainty quantification to evaluate predictive fairness of foundation AI model for skin lesion classes across patient demographics
- Authors: Swarnava Bhattacharyya, Umapada Pal, Tapabrata Chakraborti,
- Abstract summary: We use conformal analysis to quantify the predictive uncertainty of a vision transformer based foundation model.<n>We show how this can be used as a fairness metric to evaluate the robustness of the feature embeddings of the foundation model.
- Score: 8.692647930497936
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning based diagnostic AI systems based on medical images are starting to provide similar performance as human experts. However these data hungry complex systems are inherently black boxes and therefore slow to be adopted for high risk applications like healthcare. This problem of lack of transparency is exacerbated in the case of recent large foundation models, which are trained in a self supervised manner on millions of data points to provide robust generalisation across a range of downstream tasks, but the embeddings generated from them happen through a process that is not interpretable, and hence not easily trustable for clinical applications. To address this timely issue, we deploy conformal analysis to quantify the predictive uncertainty of a vision transformer (ViT) based foundation model across patient demographics with respect to sex, age and ethnicity for the tasks of skin lesion classification using several public benchmark datasets. The significant advantage of this method is that conformal analysis is method independent and it not only provides a coverage guarantee at population level but also provides an uncertainty score for each individual. We used a model-agnostic dynamic F1-score-based sampling during model training, which helped to stabilize the class imbalance and we investigate the effects on uncertainty quantification (UQ) with or without this bias mitigation step. Thus we show how this can be used as a fairness metric to evaluate the robustness of the feature embeddings of the foundation model (Google DermFoundation) and thus advance the trustworthiness and fairness of clinical AI.
Related papers
- AI Alignment in Medical Imaging: Unveiling Hidden Biases Through Counterfactual Analysis [16.21270312974956]
We introduce a novel statistical framework to evaluate the dependency of medical imaging ML models on sensitive attributes, such as demographics.
We present a practical algorithm that combines conditional latent diffusion models with statistical hypothesis testing to identify and quantify such biases.
arXiv Detail & Related papers (2025-04-28T09:28:25Z) - Inadequacy of common stochastic neural networks for reliable clinical
decision support [0.4262974002462632]
Widespread adoption of AI for medical decision making is still hindered due to ethical and safety-related concerns.
Common deep learning approaches, however, have the tendency towards overconfidence under data shift.
This study investigates their actual reliability in clinical applications.
arXiv Detail & Related papers (2024-01-24T18:49:30Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Policy Optimization for Personalized Interventions in Behavioral Health [8.10897203067601]
Behavioral health interventions, delivered through digital platforms, have the potential to significantly improve health outcomes.
We study the problem of optimizing personalized interventions for patients to maximize a long-term outcome.
We present a new approach for this problem that we dub DecompPI, which decomposes the state space for a system of patients to the individual level.
arXiv Detail & Related papers (2023-03-21T21:42:03Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
We introduce DEviS, an easily implementable foundational model that seamlessly integrates into various medical image segmentation networks.
By leveraging subjective logic theory, we explicitly model probability and uncertainty for the problem of medical image segmentation.
DeviS incorporates an uncertainty-aware filtering module, which utilizes the metric of uncertainty-calibrated error to filter reliable data.
arXiv Detail & Related papers (2023-01-01T05:02:46Z) - Modeling Disagreement in Automatic Data Labelling for Semi-Supervised
Learning in Clinical Natural Language Processing [2.016042047576802]
We investigate the quality of uncertainty estimates from a range of current state-of-the-art predictive models applied to the problem of observation detection in radiology reports.
arXiv Detail & Related papers (2022-05-29T20:20:49Z) - Estimating and Improving Fairness with Adversarial Learning [65.99330614802388]
We propose an adversarial multi-task training strategy to simultaneously mitigate and detect bias in the deep learning-based medical image analysis system.
Specifically, we propose to add a discrimination module against bias and a critical module that predicts unfairness within the base classification model.
We evaluate our framework on a large-scale public-available skin lesion dataset.
arXiv Detail & Related papers (2021-03-07T03:10:32Z) - Evaluating Model Robustness and Stability to Dataset Shift [7.369475193451259]
We propose a framework for analyzing stability of machine learning models.
We use the original evaluation data to determine distributions under which the algorithm performs poorly.
We estimate the algorithm's performance on the "worst-case" distribution.
arXiv Detail & Related papers (2020-10-28T17:35:39Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - An Uncertainty-based Human-in-the-loop System for Industrial Tool Wear
Analysis [68.8204255655161]
We show that uncertainty measures based on Monte-Carlo dropout in the context of a human-in-the-loop system increase the system's transparency and performance.
A simulation study demonstrates that the uncertainty-based human-in-the-loop system increases performance for different levels of human involvement.
arXiv Detail & Related papers (2020-07-14T15:47:37Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
COVID-19 pandemics has challenged emergency response systems worldwide, with widespread reports of essential services breakdown and collapse of health care structure.
This work describes a machine learning model derived from hemogram exam data performed in symptomatic patients.
Proposed models can predict COVID-19 qRT-PCR results in symptomatic individuals with high accuracy, sensitivity and specificity.
arXiv Detail & Related papers (2020-05-10T01:45:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.