Deep Learning modeling of Limit Order Book: a comparative perspective
- URL: http://arxiv.org/abs/2007.07319v3
- Date: Sun, 18 Oct 2020 15:44:44 GMT
- Title: Deep Learning modeling of Limit Order Book: a comparative perspective
- Authors: Antonio Briola, Jeremy Turiel, Tomaso Aste
- Abstract summary: The present work addresses theoretical and practical questions in the domain of Deep Learning for High Frequency Trading.
State-of-the-art models such as Random models, Logistic Regressions, LSTMs, LSTMs equipped with an Attention mask, CNN-LSTM and Attentions are reviewed and compared on the same tasks.
The underlying dimensions of the modeling techniques are investigated to understand whether these are intrinsic to the Limit Order Book's dynamics.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The present work addresses theoretical and practical questions in the domain
of Deep Learning for High Frequency Trading. State-of-the-art models such as
Random models, Logistic Regressions, LSTMs, LSTMs equipped with an Attention
mask, CNN-LSTMs and MLPs are reviewed and compared on the same tasks, feature
space and dataset, and then clustered according to pairwise similarity and
performance metrics. The underlying dimensions of the modeling techniques are
hence investigated to understand whether these are intrinsic to the Limit Order
Book's dynamics. We observe that the Multilayer Perceptron performs comparably
to or better than state-of-the-art CNN-LSTM architectures indicating that
dynamic spatial and temporal dimensions are a good approximation of the LOB's
dynamics, but not necessarily the true underlying dimensions.
Related papers
- Towards a theory of learning dynamics in deep state space models [12.262490032020832]
State space models (SSMs) have shown remarkable empirical performance on many long sequence modeling tasks.
This work is a step toward a theory of learning dynamics in deep state space models.
arXiv Detail & Related papers (2024-07-10T00:01:56Z) - Understanding the differences in Foundation Models: Attention, State Space Models, and Recurrent Neural Networks [50.29356570858905]
We introduce the Dynamical Systems Framework (DSF), which allows a principled investigation of all these architectures in a common representation.
We provide principled comparisons between softmax attention and other model classes, discussing the theoretical conditions under which softmax attention can be approximated.
This shows the DSF's potential to guide the systematic development of future more efficient and scalable foundation models.
arXiv Detail & Related papers (2024-05-24T17:19:57Z) - Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
We present a new class of equivariant neural networks, dubbed Lattice-Equivariant Neural Networks (LENNs)
Our approach develops within a recently introduced framework aimed at learning neural network-based surrogate models Lattice Boltzmann collision operators.
Our work opens towards practical utilization of machine learning-augmented Lattice Boltzmann CFD in real-world simulations.
arXiv Detail & Related papers (2024-05-22T17:23:15Z) - Theoretical Foundations of Deep Selective State-Space Models [13.971499161967083]
Deep SSMs demonstrate outstanding performance across a diverse set of domains.
Recent developments show that if the linear recurrence powering SSMs allows for multiplicative interactions between inputs and hidden states.
We show that when random linear recurrences are equipped with simple input-controlled transitions, then the hidden state is provably a low-dimensional projection of a powerful mathematical object.
arXiv Detail & Related papers (2024-02-29T11:20:16Z) - Characterizing Truthfulness in Large Language Model Generations with
Local Intrinsic Dimension [63.330262740414646]
We study how to characterize and predict the truthfulness of texts generated from large language models (LLMs)
We suggest investigating internal activations and quantifying LLM's truthfulness using the local intrinsic dimension (LID) of model activations.
arXiv Detail & Related papers (2024-02-28T04:56:21Z) - Disentangling Structured Components: Towards Adaptive, Interpretable and
Scalable Time Series Forecasting [52.47493322446537]
We develop a adaptive, interpretable and scalable forecasting framework, which seeks to individually model each component of the spatial-temporal patterns.
SCNN works with a pre-defined generative process of MTS, which arithmetically characterizes the latent structure of the spatial-temporal patterns.
Extensive experiments are conducted to demonstrate that SCNN can achieve superior performance over state-of-the-art models on three real-world datasets.
arXiv Detail & Related papers (2023-05-22T13:39:44Z) - A Comparative Study of Detecting Anomalies in Time Series Data Using
LSTM and TCN Models [2.007262412327553]
This paper compares two prominent deep learning modeling techniques.
The Recurrent Neural Network (RNN)-based Long Short-Term Memory (LSTM) and the convolutional Neural Network (CNN)-based Temporal Convolutional Networks (TCN) are compared.
arXiv Detail & Related papers (2021-12-17T02:46:55Z) - PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive
Learning [109.84770951839289]
We present PredRNN, a new recurrent network for learning visual dynamics from historical context.
We show that our approach obtains highly competitive results on three standard datasets.
arXiv Detail & Related papers (2021-03-17T08:28:30Z) - Compressing LSTM Networks by Matrix Product Operators [7.395226141345625]
Long Short Term Memory(LSTM) models are the building blocks of many state-of-the-art natural language processing(NLP) and speech enhancement(SE) algorithms.
Here we introduce the MPO decomposition, which describes the local correlation of quantum states in quantum many-body physics.
We propose a matrix product operator(MPO) based neural network architecture to replace the LSTM model.
arXiv Detail & Related papers (2020-12-22T11:50:06Z) - A journey in ESN and LSTM visualisations on a language task [77.34726150561087]
We trained ESNs and LSTMs on a Cross-Situationnal Learning (CSL) task.
The results are of three kinds: performance comparison, internal dynamics analyses and visualization of latent space.
arXiv Detail & Related papers (2020-12-03T08:32:01Z) - Sentiment Analysis Using Simplified Long Short-term Memory Recurrent
Neural Networks [1.5146765382501612]
We perform sentiment analysis on a GOP Debate Twitter dataset.
To speed up training and reduce the computational cost and time, six different parameter reduced slim versions of the LSTM model are proposed.
arXiv Detail & Related papers (2020-05-08T12:50:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.