論文の概要: A cellular automata approach to local patterns for texture recognition
- arxiv url: http://arxiv.org/abs/2007.07462v1
- Date: Wed, 15 Jul 2020 03:25:51 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-10 05:54:56.574060
- Title: A cellular automata approach to local patterns for texture recognition
- Title(参考訳): テクスチャ認識のための局所パターンへのセルオートマトンアプローチ
- Authors: Joao Florindo, Konradin Metze
- Abstract要約: 本稿では, セルオートマトンによる複雑な物体の表現力と, テクスチャ解析における局所記述子の既知の有効性を組み合わせたテクスチャ記述法を提案する。
我々の提案は、特に現実世界の問題において、他の古典的、最先端のアプローチよりも優れています。
- 参考スコア(独自算出の注目度): 3.42658286826597
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Texture recognition is one of the most important tasks in computer vision
and, despite the recent success of learning-based approaches, there is still
need for model-based solutions. This is especially the case when the amount of
data available for training is not sufficiently large, a common situation in
several applied areas, or when computational resources are limited. In this
context, here we propose a method for texture descriptors that combines the
representation power of complex objects by cellular automata with the known
effectiveness of local descriptors in texture analysis. The method formulates a
new transition function for the automaton inspired on local binary descriptors.
It counterbalances the new state of each cell with the previous state, in this
way introducing an idea of "controlled deterministic chaos". The descriptors
are obtained from the distribution of cell states. The proposed descriptors are
applied to the classification of texture images both on benchmark data sets and
a real-world problem, i.e., that of identifying plant species based on the
texture of their leaf surfaces. Our proposal outperforms other classical and
state-of-the-art approaches, especially in the real-world problem, thus
revealing its potential to be applied in numerous practical tasks involving
texture recognition at some stage.
- Abstract(参考訳): テクスチャ認識はコンピュータビジョンにおいて最も重要なタスクの1つであり、最近の学習ベースのアプローチの成功にもかかわらず、モデルベースのソリューションが必要である。
これは特に、トレーニングで利用できるデータの量が十分に大きくない場合、いくつかの適用領域でよくある状況、あるいは計算資源が限られている場合である。
本稿では, セルオートマトンによる複雑な物体の表現力と, テクスチャ解析における局所記述子の既知の有効性を組み合わせたテクスチャ記述子の手法を提案する。
この方法は、ローカルバイナリ記述子にインスパイアされたオートマトンの新しい遷移関数を定式化する。
これは各セルの新しい状態と以前の状態とを両立させ、「決定論的カオスを制御する」という概念を導入する。
ディスクリプタは、細胞状態の分布から得られる。
提案する記述子は,葉面のテクスチャに基づいて植物種を識別する,ベンチマークデータセットと実世界の問題の両方に基づいてテクスチャ画像の分類に適用する。
提案手法は他の古典的・最先端的アプローチ,特に実世界の問題よりも優れており,テクスチャ認識を含む多くの実践的タスクに応用できる可能性を明らかにした。
関連論文リスト
- Mapping High-level Semantic Regions in Indoor Environments without
Object Recognition [50.624970503498226]
本研究では,屋内環境における埋め込みナビゲーションによる意味領域マッピング手法を提案する。
地域識別を実現するために,視覚言語モデルを用いて地図作成のためのシーン情報を提供する。
グローバルなフレームにエゴセントリックなシーン理解を投影することにより、提案手法は各場所の可能な領域ラベル上の分布としてのセマンティックマップを生成する。
論文 参考訳(メタデータ) (2024-03-11T18:09:50Z) - Texture image analysis based on joint of multi directions GLCM and local
ternary patterns [0.0]
テクスチャ機能は、通勤視覚や機械学習問題において、多くの異なるアプリケーションで使用することができる。
2つのテクスチャ記述子、共起行列と局所三元パターンを組み合わせた新しい手法を提案する。
実験の結果,提案手法はいくつかの最先端手法と比較して高い分類率を示すことがわかった。
論文 参考訳(メタデータ) (2022-09-05T09:53:00Z) - ZippyPoint: Fast Interest Point Detection, Description, and Matching
through Mixed Precision Discretization [71.91942002659795]
我々は,ネットワーク量子化技術を用いて推論を高速化し,計算限定プラットフォームでの利用を可能にする。
バイナリディスクリプタを用いた効率的な量子化ネットワークZippyPointは,ネットワーク実行速度,ディスクリプタマッチング速度,3Dモデルサイズを改善する。
これらの改善は、ホモグラフィー推定、視覚的ローカライゼーション、マップフリーな視覚的再ローカライゼーションのタスクで評価されるように、小さなパフォーマンス劣化をもたらす。
論文 参考訳(メタデータ) (2022-03-07T18:59:03Z) - Texture Generation with Neural Cellular Automata [64.70093734012121]
一つのテンプレート画像からテクスチャジェネレータを学習する。
NCAモデルで示される振る舞いは、テクスチャを生成するための学習された分散されたローカルアルゴリズムであると主張します。
論文 参考訳(メタデータ) (2021-05-15T22:05:46Z) - Cross-Descriptor Visual Localization and Mapping [81.16435356103133]
視覚のローカライゼーションとマッピングは、Mixed Realityとロボティクスシステムの大部分を支える重要な技術である。
特徴表現の連続的な更新を必要とする局所化とマッピングのための3つの新しいシナリオを提案する。
我々のデータ駆動型アプローチは特徴記述子型に非依存であり、計算要求が低く、記述アルゴリズムの数と線形にスケールする。
論文 参考訳(メタデータ) (2020-12-02T18:19:51Z) - Texture image classification based on a pseudo-parabolic diffusion model [0.0]
提案手法は、確立されたベンチマークテクスチャデータベースの分類と、植物種認識の実践的な課題について検証する。
画像の同種領域内では、擬似放物的演算子が、うる限りノイズの多い詳細を滑らかにすることができることで、優れた性能を大いに正当化することができる。
論文 参考訳(メタデータ) (2020-11-14T00:04:07Z) - Unsupervised Metric Relocalization Using Transform Consistency Loss [66.19479868638925]
メートル法再ローカライズを行うためのトレーニングネットワークは、従来、正確な画像対応が必要である。
地図内のクエリ画像のローカライズは、登録に使用される参照画像に関係なく、同じ絶対的なポーズを与えるべきである。
提案手法は, 限られた地下構造情報が得られる場合に, 他の教師あり手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-11-01T19:24:27Z) - Region Comparison Network for Interpretable Few-shot Image
Classification [97.97902360117368]
新しいクラスのモデルをトレーニングするために、ラベル付きサンプルの限られた数だけを効果的に活用するための画像分類が提案されている。
本研究では,領域比較ネットワーク (RCN) と呼ばれる距離学習に基づく手法を提案する。
また,タスクのレベルからカテゴリへの解釈可能性の一般化も提案する。
論文 参考訳(メタデータ) (2020-09-08T07:29:05Z) - Reorganizing local image features with chaotic maps: an application to
texture recognition [0.0]
テクスチャ認識のためのカオスベースの局所記述子を提案する。
画像を3次元ユークリッド空間にマッピングし、この3次元構造上のカオス写像を反復し、元の像に戻す。
本手法の有効性をベンチマークデータベースの分類と,葉面のテクスチャに基づくブラジルの植物種の同定で検証した。
論文 参考訳(メタデータ) (2020-07-15T03:15:01Z) - Contextual Encoder-Decoder Network for Visual Saliency Prediction [42.047816176307066]
本稿では,大規模な画像分類タスクに基づいて事前学習した畳み込みニューラルネットワークに基づくアプローチを提案する。
得られた表現をグローバルなシーン情報と組み合わせて視覚的サリエンシを正確に予測する。
最先端技術と比較して、このネットワークは軽量な画像分類バックボーンに基づいている。
論文 参考訳(メタデータ) (2019-02-18T16:15:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。