論文の概要: Monocular Retinal Depth Estimation and Joint Optic Disc and Cup
Segmentation using Adversarial Networks
- arxiv url: http://arxiv.org/abs/2007.07502v1
- Date: Wed, 15 Jul 2020 06:21:46 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-10 05:38:49.292864
- Title: Monocular Retinal Depth Estimation and Joint Optic Disc and Cup
Segmentation using Adversarial Networks
- Title(参考訳): 対向ネットワークを用いた単眼網膜奥行き推定と視神経乳頭およびカップセグメンテーション
- Authors: Sharath M Shankaranarayana and Keerthi Ram and Kaushik Mitra and
Mohanasankar Sivaprakasam
- Abstract要約: 本稿では,1つの画像から深度マップを予測するために,対角ネットワークを用いた新しい手法を提案する。
5倍のクロスバリデーションで0.92の非常に高い平均相関係数を得る。
次に,光ディスクとカップセグメンテーションのプロキシタスクとして深度推定プロセスを利用する。
- 参考スコア(独自算出の注目度): 18.188041599999547
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One of the important parameters for the assessment of glaucoma is optic nerve
head (ONH) evaluation, which usually involves depth estimation and subsequent
optic disc and cup boundary extraction. Depth is usually obtained explicitly
from imaging modalities like optical coherence tomography (OCT) and is very
challenging to estimate depth from a single RGB image. To this end, we propose
a novel method using adversarial network to predict depth map from a single
image. The proposed depth estimation technique is trained and evaluated using
individual retinal images from INSPIRE-stereo dataset. We obtain a very high
average correlation coefficient of 0.92 upon five fold cross validation
outperforming the state of the art. We then use the depth estimation process as
a proxy task for joint optic disc and cup segmentation.
- Abstract(参考訳): 緑内障評価の重要なパラメータの1つは視神経頭(ONH)評価であり、通常は深度推定とその後の視神経円板とカップ境界抽出を伴う。
深さは通常、光学コヒーレンストモグラフィ(OCT)のような画像モダリティから明らかに得られ、単一のRGB画像から深さを推定することが非常に困難である。
そこで本研究では,1つの画像から深度マップを予測するために,対角ネットワークを用いた新しい手法を提案する。
提案手法は,INSPIREステレオデータセットから個々の網膜画像を用いて評価し,評価する。
高い平均相関係数の0.92を5倍のクロス検証で取得し,精度を向上した。
次に,光ディスクとカップセグメンテーションのプロキシタスクとして深度推定プロセスを利用する。
関連論文リスト
- EyeLS: Shadow-Guided Instrument Landing System for Intraocular Target
Approaching in Robotic Eye Surgery [51.05595735405451]
ロボット眼科手術(Robotic Ophthalmic surgery)は、網膜下注入における網膜侵入や網膜剥離における浮動組織の除去など、高精度な介入を促進する新しい技術である。
現在の画像に基づく手法では、針先端の軌跡を網膜と浮動標的の両方に向けて効果的に推定することはできない。
本研究では,ターゲットの影位置と楽器先端を用いて相対的な深度位置を推定する。
手術シミュレータでは, 平均深度0.0127mm, 平均深度0.3473mm, 平均深度0.0127mm, 平均深度0.3473mmを目標とした。
論文 参考訳(メタデータ) (2023-11-15T09:11:37Z) - Deep learning network to correct axial and coronal eye motion in 3D OCT
retinal imaging [65.47834983591957]
深層学習に基づくニューラルネットワークを用いて,OCTの軸運動とコロナ運動のアーチファクトを1つのスキャンで補正する。
実験結果から, 提案手法は動作アーチファクトを効果的に補正し, 誤差が他の方法よりも小さいことを示す。
論文 参考訳(メタデータ) (2023-05-27T03:55:19Z) - Compressive Ptychography using Deep Image and Generative Priors [9.658250977094562]
Ptychographyは、ナノメートルスケールでサンプルの非侵襲的なイメージングを可能にする、よく確立されたコヒーレント回折イメージング技術である。
Ptychographyの最大の制限は、サンプルの機械的スキャンによる長いデータ取得時間である。
本稿では,深部画像先行と深部画像先行とを組み合わせた生成モデルを提案する。
論文 参考訳(メタデータ) (2022-05-05T02:18:26Z) - End-to-end Learning for Joint Depth and Image Reconstruction from
Diffracted Rotation [10.896567381206715]
回折回転から深度を学習する新しいエンド・ツー・エンド学習手法を提案する。
提案手法は, 単分子深度推定のタスクにおいて既存の手法よりもはるかに少ない複雑なモデルと少ないトレーニングデータを必要とする。
論文 参考訳(メタデータ) (2022-04-14T16:14:37Z) - Parametric Scaling of Preprocessing assisted U-net Architecture for
Improvised Retinal Vessel Segmentation [1.3869502085838448]
本稿では,形態素前処理と拡張U-netアーキテクチャを併用した画像強調手法を提案する。
ROC曲線 (>0.9762) と分類精度 (>95.47%) の領域において、領域内の他のアルゴリズムと比較して顕著な改善が得られた。
論文 参考訳(メタデータ) (2022-03-18T15:26:05Z) - Depth Estimation from Single-shot Monocular Endoscope Image Using Image
Domain Adaptation And Edge-Aware Depth Estimation [1.7086737326992167]
領域適応によるランベルト面の変換とマルチスケールエッジロスを用いた深度推定による単眼単眼単眼内視鏡像からの深度推定法を提案する。
臓器の表面のテクスチャと特異反射により、深さ推定の精度が低下する。
本研究では,畳み込みニューラルネットワークを用いた大腸内視鏡像の解剖学的位置同定に,推定深度画像を適用した。
論文 参考訳(メタデータ) (2022-01-12T14:06:54Z) - Sharp-GAN: Sharpness Loss Regularized GAN for Histopathology Image
Synthesis [65.47507533905188]
コンディショナル・ジェネレーショナル・ジェネレーティブ・逆境ネットワークは、合成病理像を生成するために応用されている。
そこで我々は,現実的な病理像を合成するために,シャープネスロス正則化生成対向ネットワークを提案する。
論文 参考訳(メタデータ) (2021-10-27T18:54:25Z) - Weakly-Supervised Monocular Depth Estimationwith Resolution-Mismatched
Data [73.9872931307401]
単眼深度推定ネットワークをトレーニングするための弱教師付きフレームワークを提案する。
提案フレームワークは, 共有重量単分子深度推定ネットワークと蒸留用深度再構成ネットワークから構成される。
実験結果から,本手法は教師なし・半教師付き学習ベース方式よりも優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2021-09-23T18:04:12Z) - Self-Supervised Generative Adversarial Network for Depth Estimation in
Laparoscopic Images [13.996932179049978]
本稿では,ジェネレーティブ・ディバイサル・ネットワークに基づく自己教師型深度推定手法であるSADepthを提案する。
エンコーダデコーダジェネレータと、トレーニング中に幾何学的制約を組み込む識別器で構成される。
2つの公開データセットの実験により、SADepthは最新の最先端の教師なし手法よりも大きなマージンで優れていることが示された。
論文 参考訳(メタデータ) (2021-07-09T19:40:20Z) - Dual Pixel Exploration: Simultaneous Depth Estimation and Image
Restoration [77.1056200937214]
本研究では,ぼかしと深度情報をリンクするDPペアの形成について検討する。
本稿では,画像の深さを共同で推定し,復元するためのエンドツーエンドDDDNet(DPベースのDepth and De Network)を提案する。
論文 参考訳(メタデータ) (2020-12-01T06:53:57Z) - Depth Completion Using a View-constrained Deep Prior [73.21559000917554]
近年の研究では、畳み込みニューラルネットワーク(CNN)の構造が、自然画像に有利な強い先行性をもたらすことが示されている。
この前者はディープ・イメージ・先行 (DIP) と呼ばれ、画像の装飾や塗装といった逆問題において有効な正則化器である。
我々は、DIPの概念を深度画像に拡張し、色画像とノイズと不完全な目標深度マップから、CNNネットワーク構造を先行して復元された深度マップを再構成する。
論文 参考訳(メタデータ) (2020-01-21T21:56:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。