Predicting Clinical Diagnosis from Patients Electronic Health Records
Using BERT-based Neural Networks
- URL: http://arxiv.org/abs/2007.07562v1
- Date: Wed, 15 Jul 2020 09:22:55 GMT
- Title: Predicting Clinical Diagnosis from Patients Electronic Health Records
Using BERT-based Neural Networks
- Authors: Pavel Blinov, Manvel Avetisian, Vladimir Kokh, Dmitry Umerenkov,
Alexander Tuzhilin
- Abstract summary: We show the importance of this problem in medical community.
We present a modification of Bidirectional Representations from Transformers (BERT) model for classification sequence.
We use a large-scale Russian EHR dataset consisting of about 4 million unique patient visits.
- Score: 62.9447303059342
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper we study the problem of predicting clinical diagnoses from
textual Electronic Health Records (EHR) data. We show the importance of this
problem in medical community and present comprehensive historical review of the
problem and proposed methods. As the main scientific contributions we present a
modification of Bidirectional Encoder Representations from Transformers (BERT)
model for sequence classification that implements a novel way of
Fully-Connected (FC) layer composition and a BERT model pretrained only on
domain data. To empirically validate our model, we use a large-scale Russian
EHR dataset consisting of about 4 million unique patient visits. This is the
largest such study for the Russian language and one of the largest globally. We
performed a number of comparative experiments with other text representation
models on the task of multiclass classification for 265 disease subset of
ICD-10. The experiments demonstrate improved performance of our models compared
to other baselines, including a fine-tuned Russian BERT (RuBERT) variant. We
also show comparable performance of our model with a panel of experienced
medical experts. This allows us to hope that implementation of this system will
reduce misdiagnosis.
Related papers
- Towards Clinician-Preferred Segmentation: Leveraging Human-in-the-Loop for Test Time Adaptation in Medical Image Segmentation [10.65123164779962]
Deep learning-based medical image segmentation models often face performance degradation when deployed across various medical centers.
We propose a novel Human-in-the-loop TTA framework that capitalizes on the largely overlooked potential of clinician-corrected predictions.
Our framework conceives a divergence loss, designed specifically to diminish the prediction divergence instigated by domain disparities.
arXiv Detail & Related papers (2024-05-14T02:02:15Z) - Towards a clinically accessible radiology foundation model: open-access and lightweight, with automated evaluation [113.5002649181103]
Training open-source small multimodal models (SMMs) to bridge competency gaps for unmet clinical needs in radiology.
For training, we assemble a large dataset of over 697 thousand radiology image-text pairs.
For evaluation, we propose CheXprompt, a GPT-4-based metric for factuality evaluation, and demonstrate its parity with expert evaluation.
The inference of LlaVA-Rad is fast and can be performed on a single V100 GPU in private settings, offering a promising state-of-the-art tool for real-world clinical applications.
arXiv Detail & Related papers (2024-03-12T18:12:02Z) - Estimating the severity of dental and oral problems via sentiment
classification over clinical reports [0.8287206589886879]
Analyzing authors' sentiments in texts can be practical and useful in various fields, including medicine and dentistry.
Deep learning model based on Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) network architecture, known as CNN-LSTM, was developed to detect severity level of patient's problem.
arXiv Detail & Related papers (2024-01-17T14:33:13Z) - A Transformer-based representation-learning model with unified
processing of multimodal input for clinical diagnostics [63.106382317917344]
We report a Transformer-based representation-learning model as a clinical diagnostic aid that processes multimodal input in a unified manner.
The unified model outperformed an image-only model and non-unified multimodal diagnosis models in the identification of pulmonary diseases.
arXiv Detail & Related papers (2023-06-01T16:23:47Z) - Textual Data Augmentation for Patient Outcomes Prediction [67.72545656557858]
We propose a novel data augmentation method to generate artificial clinical notes in patients' Electronic Health Records.
We fine-tune the generative language model GPT-2 to synthesize labeled text with the original training data.
We evaluate our method on the most common patient outcome, i.e., the 30-day readmission rate.
arXiv Detail & Related papers (2022-11-13T01:07:23Z) - An Ensemble Approach for Patient Prognosis of Head and Neck Tumor Using
Multimodal Data [0.0]
We propose a multimodal network that ensembles deep multi-task logistic regression (MTLR), Cox proportional hazard (CoxPH) and CNN models to predict prognostic outcomes for patients with head and neck tumors.
Our proposed ensemble solution achieves a C-index of 0.72 on The HECKTOR test set that saved us the first place in prognosis task of the HECKTOR challenge.
arXiv Detail & Related papers (2022-02-25T07:50:59Z) - Development of patients triage algorithm from nationwide COVID-19
registry data based on machine learning [1.0323063834827415]
This paper provides the development processes of the severity assessment model using machine learning techniques.
Model only requires basic patients' basic personal data, allowing for them to judge their own severity.
We aim to establish a medical system that allows patients to check their own severity and informs them to visit the appropriate clinic center based on the past treatment details of other patients with similar severity.
arXiv Detail & Related papers (2021-09-18T19:56:27Z) - Medical Profile Model: Scientific and Practical Applications in
Healthcare [1.718235998156457]
We present the patient histories as temporal sequences of diseases for which embeddings are learned in an unsupervised setup.
The embedding space includes demographic parameters which allow the creation of generalized patient profiles.
The training of such a medical profile model has been performed on a dataset of more than one million patients.
arXiv Detail & Related papers (2021-06-21T13:30:43Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.