Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification
- URL: http://arxiv.org/abs/2102.13269v1
- Date: Fri, 26 Feb 2021 02:29:30 GMT
- Title: Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification
- Authors: Yi Zhou, Lei Huang, Tianfei Zhou, Ling Shao
- Abstract summary: deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
- Score: 83.6017225363714
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Chest X-rays are an important and accessible clinical imaging tool for the
detection of many thoracic diseases. Over the past decade, deep learning, with
a focus on the convolutional neural network (CNN), has become the most powerful
computer-aided diagnosis technology for improving disease identification
performance. However, training an effective and robust deep CNN usually
requires a large amount of data with high annotation quality. For chest X-ray
imaging, annotating large-scale data requires professional domain knowledge and
is time-consuming. Thus, existing public chest X-ray datasets usually adopt
language pattern based methods to automatically mine labels from reports.
However, this results in label uncertainty and inconsistency. In this paper, we
propose many-to-one distribution learning (MODL) and K-nearest neighbor
smoothing (KNNS) methods from two perspectives to improve a single model's
disease identification performance, rather than focusing on an ensemble of
models. MODL integrates multiple models to obtain a soft label distribution for
optimizing the single target model, which can reduce the effects of original
label uncertainty. Moreover, KNNS aims to enhance the robustness of the target
model to provide consistent predictions on images with similar medical
findings. Extensive experiments on the public NIH Chest X-ray and CheXpert
datasets show that our model achieves consistent improvements over the
state-of-the-art methods.
Related papers
- SynthEnsemble: A Fusion of CNN, Vision Transformer, and Hybrid Models for Multi-Label Chest X-Ray Classification [0.6218519716921521]
We employ deep learning techniques to identify patterns in chest X-rays that correspond to different diseases.
The best individual model was the CoAtNet, which achieved an area under the receiver operating characteristic curve (AUROC) of 84.2%.
arXiv Detail & Related papers (2023-11-13T21:07:07Z) - How Can We Tame the Long-Tail of Chest X-ray Datasets? [0.0]
Chest X-rays (CXRs) are a medical imaging modality that is used to infer a large number of abnormalities.
Few of them are quite commonly observed and are abundantly represented in CXR datasets.
It is challenging for current models to learn independent discriminatory features for labels that are rare but may be of high significance.
arXiv Detail & Related papers (2023-09-08T12:28:40Z) - Deep Reinforcement Learning Framework for Thoracic Diseases
Classification via Prior Knowledge Guidance [49.87607548975686]
The scarcity of labeled data for related diseases poses a huge challenge to an accurate diagnosis.
We propose a novel deep reinforcement learning framework, which introduces prior knowledge to direct the learning of diagnostic agents.
Our approach's performance was demonstrated using the well-known NIHX-ray 14 and CheXpert datasets.
arXiv Detail & Related papers (2023-06-02T01:46:31Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Multi-Label Classification of Thoracic Diseases using Dense Convolutional Network on Chest Radiographs [0.0]
We propose a multi-label disease prediction model that allows the detection of more than one pathology at a given test time.
Our proposed model achieved the highest AUC score of 0.896 for the condition Cardiomegaly.
arXiv Detail & Related papers (2022-02-08T00:43:57Z) - Covid-19 Detection from Chest X-ray and Patient Metadata using Graph
Convolutional Neural Networks [6.420262246029286]
We propose a novel Graph Convolution Neural Network (GCN) that is capable of identifying bio-markers of Covid-19 pneumonia.
The proposed method exploits important relational knowledge between data instances and their features using graph representation and applies convolution to learn the graph data.
arXiv Detail & Related papers (2021-05-20T13:13:29Z) - Deep Mining External Imperfect Data for Chest X-ray Disease Screening [57.40329813850719]
We argue that incorporating an external CXR dataset leads to imperfect training data, which raises the challenges.
We formulate the multi-label disease classification problem as weighted independent binary tasks according to the categories.
Our framework simultaneously models and tackles the domain and label discrepancies, enabling superior knowledge mining ability.
arXiv Detail & Related papers (2020-06-06T06:48:40Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
We present a relation-driven semi-supervised framework for medical image classification.
It exploits the unlabeled data by encouraging the prediction consistency of given input under perturbations.
Our method outperforms many state-of-the-art semi-supervised learning methods on both single-label and multi-label image classification scenarios.
arXiv Detail & Related papers (2020-05-15T06:57:54Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
We present a deep learning framework that enables robust modeling in challenging scenarios.
Our results show that using 85% lesser labeled data, we can build predictive models that match the performance of classifiers trained in a large-scale data setting.
arXiv Detail & Related papers (2020-05-03T02:36:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.