論文の概要: Temporal Distinct Representation Learning for Action Recognition
- arxiv url: http://arxiv.org/abs/2007.07626v1
- Date: Wed, 15 Jul 2020 11:30:40 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-10 06:04:25.420733
- Title: Temporal Distinct Representation Learning for Action Recognition
- Title(参考訳): 行動認識のための時間固有表現学習
- Authors: Junwu Weng and Donghao Luo and Yabiao Wang and Ying Tai and Chengjie
Wang and Jilin Li and Feiyue Huang and Xudong Jiang and Junsong Yuan
- Abstract要約: 2次元畳み込みニューラルネットワーク (2D CNN) はビデオの特徴付けに用いられる。
ビデオの異なるフレームは同じ2D CNNカーネルを共有しており、繰り返し、冗長な情報利用をもたらす可能性がある。
本稿では,異なるフレームからの特徴の識別チャネルを段階的にエキサイティングにするためのシーケンシャルチャネルフィルタリング機構を提案し,繰り返し情報抽出を回避する。
本手法は,ベンチマーク時相推論データセットを用いて評価し,それぞれ2.4%,1.3%の可視性向上を実現している。
- 参考スコア(独自算出の注目度): 139.93983070642412
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Motivated by the previous success of Two-Dimensional Convolutional Neural
Network (2D CNN) on image recognition, researchers endeavor to leverage it to
characterize videos. However, one limitation of applying 2D CNN to analyze
videos is that different frames of a video share the same 2D CNN kernels, which
may result in repeated and redundant information utilization, especially in the
spatial semantics extraction process, hence neglecting the critical variations
among frames. In this paper, we attempt to tackle this issue through two ways.
1) Design a sequential channel filtering mechanism, i.e., Progressive
Enhancement Module (PEM), to excite the discriminative channels of features
from different frames step by step, and thus avoid repeated information
extraction. 2) Create a Temporal Diversity Loss (TD Loss) to force the kernels
to concentrate on and capture the variations among frames rather than the image
regions with similar appearance. Our method is evaluated on benchmark temporal
reasoning datasets Something-Something V1 and V2, and it achieves visible
improvements over the best competitor by 2.4% and 1.3%, respectively. Besides,
performance improvements over the 2D-CNN-based state-of-the-arts on the
large-scale dataset Kinetics are also witnessed.
- Abstract(参考訳): 画像認識における2次元畳み込みニューラルネットワーク(2D CNN)の成功に触発されて、研究者たちはビデオのキャラクタリゼーションに利用しようと努力した。
しかし、ビデオ解析に2D CNNを適用することの1つの制限は、ビデオの異なるフレームが同じ2D CNNカーネルを共有することである。
本稿では,この問題を2つの方法で解決しようとする。
1) プログレッシブ・エンハンスメント・モジュール(PEM)と呼ばれるシーケンシャルチャネルフィルタリング機構を設計し, 異なるフレームからの特徴の識別チャネルを段階的に励起し, 繰り返し情報抽出を回避する。
2) 時間的多様性損失(TD損失)を作成し, カーネルに類似した画像領域ではなく, フレーム間の変動を集中させ, 捉えさせる。
本手法は,ベンチマーク時相推論データセットを用いて評価し,それぞれ2.4%,1.3%の可視性向上を実現している。
さらに、大規模なデータセット上の2D-CNNベースの最先端のKineeticsのパフォーマンスも改善されている。
関連論文リスト
- Neuromorphic Synergy for Video Binarization [54.195375576583864]
バイモーダルオブジェクトは視覚システムによって容易に認識できる情報を埋め込む視覚形式として機能する。
ニューロモルフィックカメラは、動きのぼかしを緩和する新しい機能を提供するが、最初にブルーを脱色し、画像をリアルタイムでバイナライズするのは簡単ではない。
本稿では,イベント空間と画像空間の両方で独立に推論を行うために,バイモーダル目標特性の事前知識を活用するイベントベースバイナリ再構築手法を提案する。
また、このバイナリ画像を高フレームレートバイナリビデオに伝搬する効率的な統合手法も開発している。
論文 参考訳(メタデータ) (2024-02-20T01:43:51Z) - NSNet: Non-saliency Suppression Sampler for Efficient Video Recognition [89.84188594758588]
非定常フレームの応答を抑制するために, NSNet(Non-Sliency Suppression Network)を提案する。
NSNetは最先端の精度効率トレードオフを実現し、最先端の手法よりもはるかに高速な2.44.3xの実用的な推論速度を示す。
論文 参考訳(メタデータ) (2022-07-21T09:41:22Z) - Coarse-to-Fine Video Denoising with Dual-Stage Spatial-Channel
Transformer [29.03463312813923]
Video Denoisingは、ノイズの多いビデオから高品質なフレームを復元することを目的としている。
既存のほとんどのアプローチでは、畳み込みニューラルネットワーク(CNN)を使用して、ノイズを元の視覚コンテンツから分離する。
粗大な映像をデノナイズするためのDual-stage Spatial-Channel Transformer (DSCT)を提案する。
論文 参考訳(メタデータ) (2022-04-30T09:01:21Z) - Gate-Shift-Fuse for Video Action Recognition [43.8525418821458]
Gate-Fuse (GSF) は、時間内相互作用を制御し、時間を通して特徴を適応的にルーティングし、それらをデータ依存的に組み合わせることを学ぶ、新しい時間的特徴抽出モジュールである。
GSFは既存の2D CNNに挿入して、パラメータや計算オーバーヘッドを無視して、効率的かつ高性能に変換することができる。
2つの人気のある2次元CNNファミリを用いてGSFを広範囲に解析し、5つの標準動作認識ベンチマークで最先端または競合性能を達成する。
論文 参考訳(メタデータ) (2022-03-16T19:19:04Z) - Action Keypoint Network for Efficient Video Recognition [63.48422805355741]
本稿では、時間的・空間的な選択をアクションキーポイントネットワーク(AK-Net)に統合することを提案する。
AK-Netは、アクションキーポイントのセットとして任意の形状の領域に散在する情報的ポイントを選択し、ビデオ認識をポイントクラウド分類に変換する。
実験結果から,AK-Netは複数のビデオ認識ベンチマークにおいて,ベースライン手法の効率と性能を一貫して向上させることができることがわかった。
論文 参考訳(メタデータ) (2022-01-17T09:35:34Z) - Exploring Motion and Appearance Information for Temporal Sentence
Grounding [52.01687915910648]
本研究では、時間的文のグラウンド化を解決するために、MARN(Motion-Appearance Reasoning Network)を提案する。
動作誘導と外見誘導のオブジェクト関係を学習するために,動作分岐と外見分岐を別々に開発する。
提案するMARNは,従来の最先端手法よりも大きなマージンで優れていた。
論文 参考訳(メタデータ) (2022-01-03T02:44:18Z) - Action Recognition with Domain Invariant Features of Skeleton Image [25.519217340328442]
そこで本研究では,行動認識のための対人訓練のための新しいCNNベースの手法を提案する。
異なる視角や対象からスケルトン画像の特徴を整列させるために,2段階のドメイン対角学習を導入する。
最先端の手法と比較して、競争力のある結果が得られる。
論文 参考訳(メタデータ) (2021-11-19T08:05:54Z) - Dual-view Snapshot Compressive Imaging via Optical Flow Aided Recurrent
Neural Network [14.796204921975733]
デュアルビュースナップショット圧縮イメージング(SCI)は、2つの視野(FoV)からのビデオを1つのスナップショットでキャプチャすることを目的としている。
既存のモデルベースの復号アルゴリズムでは個々のシーンを再構築することは困難である。
本稿では,2重ビデオSCIシステムのための光フロー支援型リカレントニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2021-09-11T14:24:44Z) - Learning Comprehensive Motion Representation for Action Recognition [124.65403098534266]
2d cnnベースのメソッドは効率的であるが、各フレームに同じ2d畳み込みカーネルを適用することで冗長な機能が得られる。
最近の試みは、フレーム間接続を確立しながら、時間的受容野や高いレイテンシに苦しめながら、動き情報をキャプチャしようとするものである。
チャネルワイズゲートベクトルを用いた動的情報に関連するチャネルを適応的に強調するCME(Channel-wise Motion Enhancement)モジュールを提案する。
また,近接する特徴写像の点対点類似性に応じて,重要な目標を持つ領域に焦点をあてる空間的運動強調(SME)モジュールを提案する。
論文 参考訳(メタデータ) (2021-03-23T03:06:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。