Visualizing Transfer Learning
- URL: http://arxiv.org/abs/2007.07628v1
- Date: Wed, 15 Jul 2020 11:34:46 GMT
- Title: Visualizing Transfer Learning
- Authors: R\'obert Szab\'o, D\'aniel Katona, M\'arton Csillag, Adri\'an
Csisz\'arik, D\'aniel Varga
- Abstract summary: We provide visualizations of individual neurons of a deep image recognition network during the temporal process of transfer learning.
These visualizations qualitatively demonstrate various novel properties of the transfer learning process.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We provide visualizations of individual neurons of a deep image recognition
network during the temporal process of transfer learning. These visualizations
qualitatively demonstrate various novel properties of the transfer learning
process regarding the speed and characteristics of adaptation, neuron reuse,
spatial scale of the represented image features, and behavior of transfer
learning to small data. We publish the large-scale dataset that we have created
for the purposes of this analysis.
Related papers
- Learning Multimodal Volumetric Features for Large-Scale Neuron Tracing [72.45257414889478]
We aim to reduce human workload by predicting connectivity between over-segmented neuron pieces.
We first construct a dataset, named FlyTracing, that contains millions of pairwise connections of segments expanding the whole fly brain.
We propose a novel connectivity-aware contrastive learning method to generate dense volumetric EM image embedding.
arXiv Detail & Related papers (2024-01-05T19:45:12Z) - A domain adaptive deep learning solution for scanpath prediction of
paintings [66.46953851227454]
This paper focuses on the eye-movement analysis of viewers during the visual experience of a certain number of paintings.
We introduce a new approach to predicting human visual attention, which impacts several cognitive functions for humans.
The proposed new architecture ingests images and returns scanpaths, a sequence of points featuring a high likelihood of catching viewers' attention.
arXiv Detail & Related papers (2022-09-22T22:27:08Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Neuronal Learning Analysis using Cycle-Consistent Adversarial Networks [4.874780144224057]
We use a variant of deep generative models called - CycleGAN, to learn the unknown mapping between pre- and post-learning neural activities.
We develop an end-to-end pipeline to preprocess, train and evaluate calcium fluorescence signals, and a procedure to interpret the resulting deep learning models.
arXiv Detail & Related papers (2021-11-25T13:24:19Z) - Factors of Influence for Transfer Learning across Diverse Appearance
Domains and Task Types [50.1843146606122]
A simple form of transfer learning is common in current state-of-the-art computer vision models.
Previous systematic studies of transfer learning have been limited and the circumstances in which it is expected to work are not fully understood.
In this paper we carry out an extensive experimental exploration of transfer learning across vastly different image domains.
arXiv Detail & Related papers (2021-03-24T16:24:20Z) - An analysis of the transfer learning of convolutional neural networks
for artistic images [1.9336815376402716]
Transfer learning from huge natural image datasets has become de facto the core of art analysis applications.
In this paper, we first use techniques for visualizing the network internal representations in order to provide clues to the understanding of what the network has learned on artistic images.
We provide a quantitative analysis of the changes introduced by the learning process thanks to metrics in both the feature and parameter spaces, as well as metrics computed on the set of maximal activation images.
arXiv Detail & Related papers (2020-11-05T09:45:32Z) - Learning Visual Representations for Transfer Learning by Suppressing
Texture [38.901410057407766]
In self-supervised learning, texture as a low-level cue may provide shortcuts that prevent the network from learning higher level representations.
We propose to use classic methods based on anisotropic diffusion to augment training using images with suppressed texture.
We empirically show that our method achieves state-of-the-art results on object detection and image classification.
arXiv Detail & Related papers (2020-11-03T18:27:03Z) - What is being transferred in transfer learning? [51.6991244438545]
We show that when training from pre-trained weights, the model stays in the same basin in the loss landscape.
We present that when training from pre-trained weights, the model stays in the same basin in the loss landscape and different instances of such model are similar in feature space and close in parameter space.
arXiv Detail & Related papers (2020-08-26T17:23:40Z) - Adversarially-Trained Deep Nets Transfer Better: Illustration on Image
Classification [53.735029033681435]
Transfer learning is a powerful methodology for adapting pre-trained deep neural networks on image recognition tasks to new domains.
In this work, we demonstrate that adversarially-trained models transfer better than non-adversarially-trained models.
arXiv Detail & Related papers (2020-07-11T22:48:42Z) - The Utility of Feature Reuse: Transfer Learning in Data-Starved Regimes [6.419457653976053]
We describe a transfer learning use case for a domain with a data-starved regime.
We evaluate the effectiveness of convolutional feature extraction and fine-tuning.
We conclude that transfer learning enhances the performance of CNN architectures in data-starved regimes.
arXiv Detail & Related papers (2020-02-29T18:48:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.