The Utility of Feature Reuse: Transfer Learning in Data-Starved Regimes
- URL: http://arxiv.org/abs/2003.04117v2
- Date: Thu, 28 Dec 2023 15:53:41 GMT
- Title: The Utility of Feature Reuse: Transfer Learning in Data-Starved Regimes
- Authors: Rashik Shadman, M.G. Sarwar Murshed, Edward Verenich, Alvaro
Velasquez, Faraz Hussain
- Abstract summary: We describe a transfer learning use case for a domain with a data-starved regime.
We evaluate the effectiveness of convolutional feature extraction and fine-tuning.
We conclude that transfer learning enhances the performance of CNN architectures in data-starved regimes.
- Score: 6.419457653976053
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The use of transfer learning with deep neural networks has increasingly
become widespread for deploying well-tested computer vision systems to newer
domains, especially those with limited datasets. We describe a transfer
learning use case for a domain with a data-starved regime, having fewer than
100 labeled target samples. We evaluate the effectiveness of convolutional
feature extraction and fine-tuning of overparameterized models with respect to
the size of target training data, as well as their generalization performance
on data with covariate shift, or out-of-distribution (OOD) data. Our
experiments demonstrate that both overparameterization and feature reuse
contribute to the successful application of transfer learning in training image
classifiers in data-starved regimes. We provide visual explanations to support
our findings and conclude that transfer learning enhances the performance of
CNN architectures in data-starved regimes.
Related papers
- An information-Theoretic Approach to Semi-supervised Transfer Learning [33.89602092349131]
Transfer learning allows propagating information from one "source dataset" to another "target dataset"
discrepancies between the underlying distributions of the source and target data are commonplace.
We suggest novel information-theoretic approaches for the analysis of the performance of deep neural networks in the context of transfer learning.
arXiv Detail & Related papers (2023-06-11T17:45:46Z) - Beyond Transfer Learning: Co-finetuning for Action Localisation [64.07196901012153]
We propose co-finetuning -- simultaneously training a single model on multiple upstream'' and downstream'' tasks.
We demonstrate that co-finetuning outperforms traditional transfer learning when using the same total amount of data.
We also show how we can easily extend our approach to multiple upstream'' datasets to further improve performance.
arXiv Detail & Related papers (2022-07-08T10:25:47Z) - CHALLENGER: Training with Attribution Maps [63.736435657236505]
We show that utilizing attribution maps for training neural networks can improve regularization of models and thus increase performance.
In particular, we show that our generic domain-independent approach yields state-of-the-art results in vision, natural language processing and on time series tasks.
arXiv Detail & Related papers (2022-05-30T13:34:46Z) - Transfer learning to improve streamflow forecasts in data sparse regions [0.0]
We study the methodology behind Transfer Learning (TL) through fine-tuning and parameter transferring for better generalization performance of streamflow prediction in data-sparse regions.
We propose a standard recurrent neural network in the form of Long Short-Term Memory (LSTM) to fit on a sufficiently large source domain dataset.
We present a methodology to implement transfer learning approaches for hydrologic applications by separating the spatial and temporal components of the model and training the model to generalize.
arXiv Detail & Related papers (2021-12-06T14:52:53Z) - How Well Do Sparse Imagenet Models Transfer? [75.98123173154605]
Transfer learning is a classic paradigm by which models pretrained on large "upstream" datasets are adapted to yield good results on "downstream" datasets.
In this work, we perform an in-depth investigation of this phenomenon in the context of convolutional neural networks (CNNs) trained on the ImageNet dataset.
We show that sparse models can match or even outperform the transfer performance of dense models, even at high sparsities.
arXiv Detail & Related papers (2021-11-26T11:58:51Z) - Evaluating deep transfer learning for whole-brain cognitive decoding [11.898286908882561]
Transfer learning (TL) is well-suited to improve the performance of deep learning (DL) models in datasets with small numbers of samples.
Here, we evaluate TL for the application of DL models to the decoding of cognitive states from whole-brain functional Magnetic Resonance Imaging (fMRI) data.
arXiv Detail & Related papers (2021-11-01T15:44:49Z) - Transfer of Pretrained Model Weights Substantially Improves
Semi-Supervised Image Classification [3.492636597449942]
Deep neural networks produce state-of-the-art results when trained on a large number of labeled examples.
Deep neural networks tend to overfit when small amounts of labeled examples are used for training.
We show that transfer learning always substantially improves the model's accuracy when few labeled examples are available.
arXiv Detail & Related papers (2021-09-02T08:58:34Z) - Probing transfer learning with a model of synthetic correlated datasets [11.53207294639557]
Transfer learning can significantly improve the sample efficiency of neural networks.
We re-think a solvable model of synthetic data as a framework for modeling correlation between data-sets.
We show that our model can capture a range of salient features of transfer learning with real data.
arXiv Detail & Related papers (2021-06-09T22:15:41Z) - Negative Data Augmentation [127.28042046152954]
We show that negative data augmentation samples provide information on the support of the data distribution.
We introduce a new GAN training objective where we use NDA as an additional source of synthetic data for the discriminator.
Empirically, models trained with our method achieve improved conditional/unconditional image generation along with improved anomaly detection capabilities.
arXiv Detail & Related papers (2021-02-09T20:28:35Z) - On Robustness and Transferability of Convolutional Neural Networks [147.71743081671508]
Modern deep convolutional networks (CNNs) are often criticized for not generalizing under distributional shifts.
We study the interplay between out-of-distribution and transfer performance of modern image classification CNNs for the first time.
We find that increasing both the training set and model sizes significantly improve the distributional shift robustness.
arXiv Detail & Related papers (2020-07-16T18:39:04Z) - Adversarially-Trained Deep Nets Transfer Better: Illustration on Image
Classification [53.735029033681435]
Transfer learning is a powerful methodology for adapting pre-trained deep neural networks on image recognition tasks to new domains.
In this work, we demonstrate that adversarially-trained models transfer better than non-adversarially-trained models.
arXiv Detail & Related papers (2020-07-11T22:48:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.