Fast Estimation of Sparse Quantum Noise
- URL: http://arxiv.org/abs/2007.07901v2
- Date: Fri, 31 Jul 2020 01:39:47 GMT
- Title: Fast Estimation of Sparse Quantum Noise
- Authors: Robin Harper, Wenjun Yu, Steven T. Flammia
- Abstract summary: We present a practical algorithm for estimating the $s$ nonzero Pauli error rates in an $s$-sparse, $n$-qubit Pauli noise channel.
We experimentally validate a version of the algorithm that uses simplified Clifford circuits on data from an IBM 14-qubit superconducting device.
- Score: 1.933681537640272
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As quantum computers approach the fault tolerance threshold, diagnosing and
characterizing the noise on large scale quantum devices is increasingly
important. One of the most important classes of noise channels is the class of
Pauli channels, for reasons of both theoretical tractability and experimental
relevance. Here we present a practical algorithm for estimating the $s$ nonzero
Pauli error rates in an $s$-sparse, $n$-qubit Pauli noise channel, or more
generally the $s$ largest Pauli error rates. The algorithm comes with rigorous
recovery guarantees and uses only $O(n^2)$ measurements, $O(s n^2)$ classical
processing time, and Clifford quantum circuits. We experimentally validate a
heuristic version of the algorithm that uses simplified Clifford circuits on
data from an IBM 14-qubit superconducting device and our open source
implementation. These data show that accurate and precise estimation of the
probability of arbitrary-weight Pauli errors is possible even when the signal
is two orders of magnitude below the measurement noise floor.
Related papers
- Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
leakage out of the computational subspace arising from the multi-level structure of qubit implementations.
We present a resource-efficient universal leakage reduction unit for superconducting qubits using parametric flux modulation.
We demonstrate that using the leakage reduction unit in repeated weight-two stabilizer measurements reduces the total number of detected errors in a scalable fashion.
arXiv Detail & Related papers (2023-09-13T16:21:32Z) - Simulation of IBM's kicked Ising experiment with Projected Entangled
Pair Operator [71.10376783074766]
We perform classical simulations of the 127-qubit kicked Ising model, which was recently emulated using a quantum circuit with error mitigation.
Our approach is based on the projected entangled pair operator (PEPO) in the Heisenberg picture.
We develop a Clifford expansion theory to compute exact expectation values and use them to evaluate algorithms.
arXiv Detail & Related papers (2023-08-06T10:24:23Z) - Simulating Noisy Variational Quantum Algorithms: A Polynomial Approach [1.806183113759115]
Large-scale variational quantum algorithms are widely recognized as a potential pathway to achieve quantum advantages.
We present a novel $gammaPPP method based on the integral path of observables back-propagation on paths.
We conduct classical simulations of IBM's zeronoised experimental results on the 127-qubit Eagle processor.
arXiv Detail & Related papers (2023-06-09T10:42:07Z) - Scalable noisy quantum circuits for biased-noise qubits [37.69303106863453]
We consider biased-noise qubits affected only by bit-flip errors, which is motivated by existing systems of stabilized cat qubits.
For realistic noise models, phase-flip will not be negligible, but in the Pauli-Twirling approximation, we show that our benchmark could check the correctness of circuits containing up to $106$ gates.
arXiv Detail & Related papers (2023-05-03T11:27:50Z) - Single-shot error mitigation by coherent Pauli checks [6.992823294269743]
We show how to generate samples from the output distribution of a quantum circuit without full-blown error correction.
Our approach is based on Coherent Pauli Checks that detect errors in a Clifford circuit.
arXiv Detail & Related papers (2022-12-07T20:03:07Z) - A single $T$-gate makes distribution learning hard [56.045224655472865]
This work provides an extensive characterization of the learnability of the output distributions of local quantum circuits.
We show that for a wide variety of the most practically relevant learning algorithms -- including hybrid-quantum classical algorithms -- even the generative modelling problem associated with depth $d=omega(log(n))$ Clifford circuits is hard.
arXiv Detail & Related papers (2022-07-07T08:04:15Z) - Unimon qubit [42.83899285555746]
Superconducting qubits are one of the most promising candidates to implement quantum computers.
Here, we introduce and demonstrate a superconducting-qubit type, the unimon, which combines the desired properties of high non-linearity, full insensitivity to dc charge noise, insensitivity to flux noise, and a simple structure consisting only of a single Josephson junction in a resonator.
arXiv Detail & Related papers (2022-03-11T12:57:43Z) - Random quantum circuits transform local noise into global white noise [118.18170052022323]
We study the distribution over measurement outcomes of noisy random quantum circuits in the low-fidelity regime.
For local noise that is sufficiently weak and unital, correlations (measured by the linear cross-entropy benchmark) between the output distribution $p_textnoisy$ of a generic noisy circuit instance shrink exponentially.
If the noise is incoherent, the output distribution approaches the uniform distribution $p_textunif$ at precisely the same rate.
arXiv Detail & Related papers (2021-11-29T19:26:28Z) - Towards Demonstrating Fault Tolerance in Small Circuits Using Bacon-Shor
Codes [5.352699766206807]
We study a next step - fault-tolerantly implementing quantum circuits.
We compute pseudo-thresholds for the Pauli error rate $p$ in a depolarizing noise model.
We see that multiple rounds of stabilizer measurements give an improvement over performing a single round at the end.
arXiv Detail & Related papers (2021-08-04T14:24:14Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
encode and decode circuits to reliably send messages over many uses of a noisy channel.
For every quantum channel $T$ and every $eps>0$ there exists a threshold $p(epsilon,T)$ for the gate error probability below which rates larger than $C-epsilon$ are fault-tolerantly achievable.
Our results are relevant in communication over large distances, and also on-chip, where distant parts of a quantum computer might need to communicate under higher levels of noise.
arXiv Detail & Related papers (2020-09-15T15:10:50Z) - Error mitigation with Clifford quantum-circuit data [0.8258451067861933]
We propose a novel, scalable error-mitigation method that applies to gate-based quantum computers.
The method generates training data $X_itextnoisy,X_itextexact$ via quantum circuits composed largely of Clifford gates.
We analyze the performance of our method versus the number of qubits, circuit depth, and number of non-Clifford gates.
arXiv Detail & Related papers (2020-05-20T16:53:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.