Simulating Noisy Variational Quantum Algorithms: A Polynomial Approach
- URL: http://arxiv.org/abs/2306.05804v3
- Date: Thu, 18 Jul 2024 06:54:20 GMT
- Title: Simulating Noisy Variational Quantum Algorithms: A Polynomial Approach
- Authors: Yuguo Shao, Fuchuan Wei, Song Cheng, Zhengwei Liu,
- Abstract summary: Large-scale variational quantum algorithms are widely recognized as a potential pathway to achieve quantum advantages.
We present a novel $gammaPPP method based on the integral path of observables back-propagation on paths.
We conduct classical simulations of IBM's zeronoised experimental results on the 127-qubit Eagle processor.
- Score: 1.806183113759115
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large-scale variational quantum algorithms are widely recognized as a potential pathway to achieve practical quantum advantages. However, the presence of quantum noise might suppress and undermine these advantages, which blurs the boundaries of classical simulability. To gain further clarity on this matter, we present a novel polynomial-scale method based on the path integral of observable's back-propagation on Pauli paths (OBPPP). This method efficiently approximates expectation values of operators in variational quantum algorithms with bounded truncation error in the presence of single-qubit Pauli noise. Theoretically, we rigorously prove: 1) For a constant minimal non-zero noise rate $\gamma$, OBPPP's time and space complexity exhibit a polynomial relationship with the number of qubits $n$, the circuit depth $L$. 2) For variable $\gamma$, in scenarios where more than two non-zero noise factors exist, the complexity remains $\mathrm{Poly}\left(n,L\right)$ if $\gamma$ exceeds $1/\log{L}$, but grows exponential with $L$ when $\gamma$ falls below $1/L$. Numerically, we conduct classical simulations of IBM's zero-noise extrapolated experimental results on the 127-qubit Eagle processor [Nature \textbf{618}, 500 (2023)]. Our method attains higher accuracy and faster runtime compared to the quantum device. Furthermore, our approach allows us to simulate noisy outcomes, enabling accurate reproduction of IBM's unmitigated results that directly correspond to raw experimental observations. Our research reveals the vital role of noise in classical simulations and the derived method is general in computing the expected value for a broad class of quantum circuits and can be applied in the verification of quantum computers.
Related papers
- Classical Simulability of Quantum Circuits with Shallow Magic Depth [12.757419723444956]
Quantum magic is a resource that allows quantum computation to surpass classical simulation.
Previous results have linked the amount of quantum magic, characterized by the number of $T$ gates or stabilizer rank, to classical simulability.
In this work, we investigate the classical simulability of quantum circuits with alternating Clifford and $T$ layers.
arXiv Detail & Related papers (2024-09-20T18:00:00Z) - Estimating quantum amplitudes can be exponentially improved [11.282486674587236]
Estimating quantum amplitudes is a fundamental task in quantum computing.
We present a novel framework for estimating quantum amplitudes by transforming pure states into their matrix forms.
Our framework achieves the standard quantum limit $epsilon-2$ and the Heisenberg limit $epsilon-1$, respectively.
arXiv Detail & Related papers (2024-08-25T04:35:53Z) - Towards large-scale quantum optimization solvers with few qubits [59.63282173947468]
We introduce a variational quantum solver for optimizations over $m=mathcalO(nk)$ binary variables using only $n$ qubits, with tunable $k>1$.
We analytically prove that the specific qubit-efficient encoding brings in a super-polynomial mitigation of barren plateaus as a built-in feature.
arXiv Detail & Related papers (2024-01-17T18:59:38Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Simulation of IBM's kicked Ising experiment with Projected Entangled
Pair Operator [71.10376783074766]
We perform classical simulations of the 127-qubit kicked Ising model, which was recently emulated using a quantum circuit with error mitigation.
Our approach is based on the projected entangled pair operator (PEPO) in the Heisenberg picture.
We develop a Clifford expansion theory to compute exact expectation values and use them to evaluate algorithms.
arXiv Detail & Related papers (2023-08-06T10:24:23Z) - Algorithmic Shadow Spectroscopy [0.0]
We present a simulator-agnostic quantum algorithm for estimating energy gaps using very few circuit repetitions (shots) and no extra resources (ancilla qubits)
We demonstrate that our method is intuitively easy to use in practice, robust against gate noise, to a new type of algorithmic error mitigation technique, and uses orders of magnitude fewer number of shots than typical near-term quantum algorithms -- as low as 10 shots per timestep is sufficient.
arXiv Detail & Related papers (2022-12-21T14:23:48Z) - A single $T$-gate makes distribution learning hard [56.045224655472865]
This work provides an extensive characterization of the learnability of the output distributions of local quantum circuits.
We show that for a wide variety of the most practically relevant learning algorithms -- including hybrid-quantum classical algorithms -- even the generative modelling problem associated with depth $d=omega(log(n))$ Clifford circuits is hard.
arXiv Detail & Related papers (2022-07-07T08:04:15Z) - Quantum Goemans-Williamson Algorithm with the Hadamard Test and
Approximate Amplitude Constraints [62.72309460291971]
We introduce a variational quantum algorithm for Goemans-Williamson algorithm that uses only $n+1$ qubits.
Efficient optimization is achieved by encoding the objective matrix as a properly parameterized unitary conditioned on an auxilary qubit.
We demonstrate the effectiveness of our protocol by devising an efficient quantum implementation of the Goemans-Williamson algorithm for various NP-hard problems.
arXiv Detail & Related papers (2022-06-30T03:15:23Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Interactive quantum advantage with noisy, shallow Clifford circuits [0.0]
We show a strategy for adding noise tolerance to the interactive protocols of Grier and Schaeffer.
A key component of this reduction is showing average-case hardness for the classical simulation tasks.
We show that is true even for quantum tasks which are $oplus$L-hard to simulate.
arXiv Detail & Related papers (2021-02-13T00:54:45Z) - Fast Estimation of Sparse Quantum Noise [1.933681537640272]
We present a practical algorithm for estimating the $s$ nonzero Pauli error rates in an $s$-sparse, $n$-qubit Pauli noise channel.
We experimentally validate a version of the algorithm that uses simplified Clifford circuits on data from an IBM 14-qubit superconducting device.
arXiv Detail & Related papers (2020-07-15T18:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.