Fighting the COVID-19 Infodemic in Social Media: A Holistic Perspective
and a Call to Arms
- URL: http://arxiv.org/abs/2007.07996v2
- Date: Fri, 9 Apr 2021 08:52:10 GMT
- Title: Fighting the COVID-19 Infodemic in Social Media: A Holistic Perspective
and a Call to Arms
- Authors: Firoj Alam, Fahim Dalvi, Shaden Shaar, Nadir Durrani, Hamdy Mubarak,
Alex Nikolov, Giovanni Da San Martino, Ahmed Abdelali, Hassan Sajjad, Kareem
Darwish, Preslav Nakov
- Abstract summary: With the outbreak of the COVID-19 pandemic, people turned to social media to read and to share timely information.
There was also a new blending of medical and political misinformation and disinformation, which gave rise to the first global infodemic.
This is a complex problem that needs a holistic approach combining the perspectives of journalists, fact-checkers, policymakers, government entities, social media platforms, and society as a whole.
- Score: 42.7332883578842
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the outbreak of the COVID-19 pandemic, people turned to social media to
read and to share timely information including statistics, warnings, advice,
and inspirational stories. Unfortunately, alongside all this useful
information, there was also a new blending of medical and political
misinformation and disinformation, which gave rise to the first global
infodemic. While fighting this infodemic is typically thought of in terms of
factuality, the problem is much broader as malicious content includes not only
fake news, rumors, and conspiracy theories, but also promotion of fake cures,
panic, racism, xenophobia, and mistrust in the authorities, among others. This
is a complex problem that needs a holistic approach combining the perspectives
of journalists, fact-checkers, policymakers, government entities, social media
platforms, and society as a whole. Taking them into account we define an
annotation schema and detailed annotation instructions, which reflect these
perspectives. We performed initial annotations using this schema, and our
initial experiments demonstrated sizable improvements over the baselines. Now,
we issue a call to arms to the research community and beyond to join the fight
by supporting our crowdsourcing annotation efforts.
Related papers
- Unveiling the Hidden Agenda: Biases in News Reporting and Consumption [59.55900146668931]
We build a six-year dataset on the Italian vaccine debate and adopt a Bayesian latent space model to identify narrative and selection biases.
We found a nonlinear relationship between biases and engagement, with higher engagement for extreme positions.
Analysis of news consumption on Twitter reveals common audiences among news outlets with similar ideological positions.
arXiv Detail & Related papers (2023-01-14T18:58:42Z) - Folk Models of Misinformation on Social Media [10.667165962654996]
We identify at least five folk models that conceptualize misinformation as either: political (counter)argumentation, out-of-context narratives, inherently fallacious information, external propaganda, or simply entertainment.
We use the rich conceptualizations embodied in these folk models to uncover how social media users minimize adverse reactions to misinformation encounters in their everyday lives.
arXiv Detail & Related papers (2022-07-26T00:40:26Z) - Adherence to Misinformation on Social Media Through Socio-Cognitive and
Group-Based Processes [79.79659145328856]
We argue that when misinformation proliferates, this happens because the social media environment enables adherence to misinformation.
We make the case that polarization and misinformation adherence are closely tied.
arXiv Detail & Related papers (2022-06-30T12:34:24Z) - "COVID-19 was a FIFA conspiracy #curropt": An Investigation into the
Viral Spread of COVID-19 Misinformation [60.268682953952506]
We estimate the extent to which misinformation has influenced the course of the COVID-19 pandemic using natural language processing models.
We provide a strategy to combat social media posts that are likely to cause widespread harm.
arXiv Detail & Related papers (2022-06-12T19:41:01Z) - Know it to Defeat it: Exploring Health Rumor Characteristics and
Debunking Efforts on Chinese Social Media during COVID-19 Crisis [65.74516068984232]
We conduct a comprehensive analysis of four months of rumor-related online discussion during COVID-19 on Weibo, a Chinese microblogging site.
Results suggest that the dread (cause fear) type of health rumors provoked significantly more discussions and lasted longer than the wish (raise hope) type.
We show the efficacy of debunking in suppressing rumor discussions, which is time-sensitive and varies across rumor types and debunkers.
arXiv Detail & Related papers (2021-09-25T14:02:29Z) - Automatic Monitoring Social Dynamics During Big Incidences: A Case Study
of COVID-19 in Bangladesh [0.26651200086513094]
This study analyzed a large set of Bangladeshi newspaper data related to CO-19 pandemic.
This analysis will help the government and other organizations to figure out the challenges that have arisen in society due to this pandemic.
arXiv Detail & Related papers (2021-01-24T07:46:17Z) - "Thought I'd Share First" and Other Conspiracy Theory Tweets from the
COVID-19 Infodemic: Exploratory Study [0.0]
Health-related misinformation threatens adherence to public health messaging.
Monitoring misinformation on social media is critical to understanding the evolution of ideas that have potentially negative public health impacts.
arXiv Detail & Related papers (2020-12-14T17:24:59Z) - Analysis of misinformation during the COVID-19 outbreak in China:
cultural, social and political entanglements [6.256108383411306]
COVID-19 resulted in an infodemic, which could erode public trust, impede virus containment, and outlive the pandemic itself.
The evolving and fragmented media landscape is a key driver of the spread of misinformation.
Our findings shed light on the distinct characteristics of misinformation during the COVID-19 and offer insights into combating misinformation in China and across the world at large.
arXiv Detail & Related papers (2020-05-21T01:34:08Z) - Fighting the COVID-19 Infodemic: Modeling the Perspective of
Journalists, Fact-Checkers, Social Media Platforms, Policy Makers, and the
Society [37.9389191670008]
COVID-19 has been declared one of the most important focus areas of the World Health Organization.
Fighting this infodemic has been declared one of the most important focus areas of the World Health Organization.
We release a large dataset of 16K manually annotated tweets for fine-grained disinformation analysis.
arXiv Detail & Related papers (2020-04-30T18:04:20Z) - Mining Disinformation and Fake News: Concepts, Methods, and Recent
Advancements [55.33496599723126]
disinformation including fake news has become a global phenomenon due to its explosive growth.
Despite the recent progress in detecting disinformation and fake news, it is still non-trivial due to its complexity, diversity, multi-modality, and costs of fact-checking or annotation.
arXiv Detail & Related papers (2020-01-02T21:01:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.