Predicting Clinical Outcomes in COVID-19 using Radiomics and Deep
Learning on Chest Radiographs: A Multi-Institutional Study
- URL: http://arxiv.org/abs/2007.08028v2
- Date: Thu, 1 Jul 2021 18:47:22 GMT
- Title: Predicting Clinical Outcomes in COVID-19 using Radiomics and Deep
Learning on Chest Radiographs: A Multi-Institutional Study
- Authors: Joseph Bae, Saarthak Kapse, Gagandeep Singh, Rishabh Gattu, Syed Ali,
Neal Shah, Colin Marshall, Jonathan Pierce, Tej Phatak, Amit Gupta, Jeremy
Green, Nikhil Madan, Prateek Prasanna
- Abstract summary: We predict mechanical ventilation requirement and mortality using computational modeling of chest radiographs (CXRs) for coronavirus disease 2019 (COVID-19) patients.
We analyzed 530 deidentified CXRs from COVID-19 patients treated at Stony Brook University Hospital and Newark Beth Israel Medical Center between March and August 2020.
- Score: 3.3839341058136054
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We predict mechanical ventilation requirement and mortality using
computational modeling of chest radiographs (CXRs) for coronavirus disease 2019
(COVID-19) patients. This two-center, retrospective study analyzed 530
deidentified CXRs from 515 COVID-19 patients treated at Stony Brook University
Hospital and Newark Beth Israel Medical Center between March and August 2020.
DL and machine learning classifiers to predict mechanical ventilation
requirement and mortality were trained and evaluated using patient CXRs. A
novel radiomic embedding framework was also explored for outcome prediction.
All results are compared against radiologist grading of CXRs (zone-wise expert
severity scores). Radiomic and DL classification models had mAUCs of
0.78+/-0.02 and 0.81+/-0.04, compared with expert scores mAUCs of 0.75+/-0.02
and 0.79+/-0.05 for mechanical ventilation requirement and mortality
prediction, respectively. Combined classifiers using both radiomics and expert
severity scores resulted in mAUCs of 0.79+/-0.04 and 0.83+/-0.04 for each
prediction task, demonstrating improvement over either artificial intelligence
or radiologist interpretation alone. Our results also suggest instances where
inclusion of radiomic features in DL improves model predictions, something that
might be explored in other pathologies. The models proposed in this study and
the prognostic information they provide might aid physician decision making and
resource allocation during the COVID-19 pandemic.
Related papers
- Prognosis of COVID-19 using Artificial Intelligence: A Systematic Review and Meta-analysis [0.23221087157793407]
This study identifies, appraises and synthesizes published studies on the use of AI for the prognosis of COVID-19.
Several AI models and architectures were employed, such as the Siamense model, support vector machine, Random Forest, eXtreme Gradient Boosting, and convolutional neural networks.
The models achieved 71%, 88% and 67% sensitivity for mortality, severity assessment and need for ventilation, respectively.
arXiv Detail & Related papers (2024-08-01T00:33:32Z) - Detection of subclinical atherosclerosis by image-based deep learning on chest x-ray [86.38767955626179]
Deep-learning algorithm to predict coronary artery calcium (CAC) score was developed on 460 chest x-ray.
The diagnostic accuracy of the AICAC model assessed by the area under the curve (AUC) was the primary outcome.
arXiv Detail & Related papers (2024-03-27T16:56:14Z) - Attention-based Saliency Maps Improve Interpretability of Pneumothorax
Classification [52.77024349608834]
To investigate chest radiograph (CXR) classification performance of vision transformers (ViT) and interpretability of attention-based saliency.
ViTs were fine-tuned for lung disease classification using four public data sets: CheXpert, Chest X-Ray 14, MIMIC CXR, and VinBigData.
ViTs had comparable CXR classification AUCs compared with state-of-the-art CNNs.
arXiv Detail & Related papers (2023-03-03T12:05:41Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
We propose to leverage transfer learning from large datasets annotated by radiologists, to predict the histological score available on a small annex dataset.
We compare different pretraining methods, namely weakly-supervised and self-supervised ones, to improve the prediction of the cirrhosis.
This method outperforms the baseline classification of the METAVIR score, reaching an AUC of 0.84 and a balanced accuracy of 0.75.
arXiv Detail & Related papers (2023-02-16T17:06:23Z) - DeepCOVID-Fuse: A Multi-modality Deep Learning Model Fusing Chest
X-Radiographs and Clinical Variables to Predict COVID-19 Risk Levels [8.593516170110203]
DeepCOVID-Fuse is a deep learning fusion model to predict risk levels in coronavirus patients.
The accuracy of DeepCOVID-Fuse trained on CXRs and clinical variables is 0.658, with an AUC of 0.842.
arXiv Detail & Related papers (2023-01-20T20:54:25Z) - BIO-CXRNET: A Robust Multimodal Stacking Machine Learning Technique for
Mortality Risk Prediction of COVID-19 Patients using Chest X-Ray Images and
Clinical Data [0.0]
This study uses 25 biomarkers and CXR images in predicting the risk in 930 COVID-19 patients admitted in Italy.
The proposed multimodal stacking technique produced the precision, sensitivity, and F1-score, of 89.03%, 90.44%, and 89.03%, respectively.
The nomogram-based scoring technique was able to predict the death probability of high-risk patients with an F1 score of 92.88 %.
arXiv Detail & Related papers (2022-06-15T15:23:43Z) - COVID-Net CXR-S: Deep Convolutional Neural Network for Severity
Assessment of COVID-19 Cases from Chest X-ray Images [74.77272804752306]
We introduce COVID-Net CXR-S, a convolutional neural network for predicting the airspace severity of a SARS-CoV-2 positive patient based on a CXR image of the patient's chest.
We leveraged transfer learning to transfer representational knowledge gained from over 16,000 CXR images from a multinational cohort of over 15,000 patient cases into a custom network architecture for severity assessment.
The proposed COVID-Net CXR-S has potential to be a powerful tool for computer-aided severity assessment of CXR images of COVID-19 positive patients.
arXiv Detail & Related papers (2021-05-01T14:15:12Z) - COVID-19 Prognosis via Self-Supervised Representation Learning and
Multi-Image Prediction [32.91440827855392]
We consider the task of predicting two types of patient deterioration based on chest X-rays.
Due to the relative scarcity of COVID-19 patient data, existing solutions leverage supervised pretraining on related non-COVID images.
In this paper, we use self-supervised learning based on the momentum contrast (MoCo) method in the pretraining phase to learn more general image representations to use for downstream tasks.
arXiv Detail & Related papers (2021-01-13T07:03:17Z) - Individualized Prediction of COVID-19 Adverse outcomes with MLHO [9.197411456718708]
We developed an end-to-end Machine Learning framework that leverages iterative feature and algorithm selection to predict Health outcomes.
We modeled the four adverse outcomes utilizing about 600 features representing patients' pre-COVID health records and demographics.
Our results demonstrated that while demographic variables are important predictors of adverse outcomes after a COVID-19 infection, the incorporation of the past clinical records are vital for a reliable prediction model.
arXiv Detail & Related papers (2020-08-10T02:44:52Z) - COVID-Net S: Towards computer-aided severity assessment via training and
validation of deep neural networks for geographic extent and opacity extent
scoring of chest X-rays for SARS-CoV-2 lung disease severity [58.23203766439791]
Chest x-rays (CXRs) are often used to assess SARS-CoV-2 severity.
In this study, we assess the feasibility of computer-aided scoring of CXRs of SARS-CoV-2 lung disease severity using a deep learning system.
arXiv Detail & Related papers (2020-05-26T16:33:52Z) - Predicting COVID-19 Pneumonia Severity on Chest X-ray with Deep Learning [57.00601760750389]
We present a severity score prediction model for COVID-19 pneumonia for frontal chest X-ray images.
Such a tool can gauge severity of COVID-19 lung infections that can be used for escalation or de-escalation of care.
arXiv Detail & Related papers (2020-05-24T23:13:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.