Prognosis of COVID-19 using Artificial Intelligence: A Systematic Review and Meta-analysis
- URL: http://arxiv.org/abs/2408.00208v1
- Date: Thu, 1 Aug 2024 00:33:32 GMT
- Title: Prognosis of COVID-19 using Artificial Intelligence: A Systematic Review and Meta-analysis
- Authors: SaeedReza Motamedian, Sadra Mohaghegh, Elham Babadi Oregani, Mahrsa Amjadi, Parnian Shobeiri, Negin Cheraghi, Niusha Solouki, Nikoo Ahmadi, Hossein Mohammad-Rahimi, Yassine Bouchareb, Arman Rahmim,
- Abstract summary: This study identifies, appraises and synthesizes published studies on the use of AI for the prognosis of COVID-19.
Several AI models and architectures were employed, such as the Siamense model, support vector machine, Random Forest, eXtreme Gradient Boosting, and convolutional neural networks.
The models achieved 71%, 88% and 67% sensitivity for mortality, severity assessment and need for ventilation, respectively.
- Score: 0.23221087157793407
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Purpose: Artificial intelligence (AI) techniques have been extensively utilized for diagnosing and prognosis of several diseases in recent years. This study identifies, appraises and synthesizes published studies on the use of AI for the prognosis of COVID-19. Method: Electronic search was performed using Medline, Google Scholar, Scopus, Embase, Cochrane and ProQuest. Studies that examined machine learning or deep learning methods to determine the prognosis of COVID-19 using CT or chest X-ray images were included. Polled sensitivity, specificity area under the curve and diagnostic odds ratio were calculated. Result: A total of 36 articles were included; various prognosis-related issues, including disease severity, mechanical ventilation or admission to the intensive care unit and mortality, were investigated. Several AI models and architectures were employed, such as the Siamense model, support vector machine, Random Forest , eXtreme Gradient Boosting, and convolutional neural networks. The models achieved 71%, 88% and 67% sensitivity for mortality, severity assessment and need for ventilation, respectively. The specificity of 69%, 89% and 89% were reported for the aforementioned variables. Conclusion: Based on the included articles, machine learning and deep learning methods used for the prognosis of COVID-19 patients using radiomic features from CT or CXR images can help clinicians manage patients and allocate resources more effectively. These studies also demonstrate that combining patient demographic, clinical data, laboratory tests and radiomic features improves model performances.
Related papers
- Symptom-based Machine Learning Models for the Early Detection of
COVID-19: A Narrative Review [0.0]
Machine learning models can analyze large datasets, incorporating patient-reported symptoms, clinical data, and medical imaging.
In this paper, we provide an overview of the landscape of symptoms-only machine learning models for predicting COVID-19, including their performance and limitations.
The review will also examine the performance of symptom-based models when compared to image-based models.
arXiv Detail & Related papers (2023-12-08T01:41:42Z) - AI Framework for Early Diagnosis of Coronary Artery Disease: An
Integration of Borderline SMOTE, Autoencoders and Convolutional Neural
Networks Approach [0.44998333629984877]
We develop a methodology for balancing and augmenting data for more accurate prediction when the data is imbalanced and the sample size is small.
The experimental results revealed that the average accuracy of our proposed method for CAD prediction was 95.36, and was higher than random forest (RF), decision tree (DT), support vector machine (SVM), logistic regression (LR), and artificial neural network (ANN)
arXiv Detail & Related papers (2023-08-29T14:33:38Z) - Deep-Learning Tool for Early Identifying Non-Traumatic Intracranial
Hemorrhage Etiology based on CT Scan [40.51754649947294]
The deep learning model was developed with 1868 eligible NCCT scans with non-traumatic ICH collected between January 2011 and April 2018.
The model's diagnostic performance was compared with clinicians's performance.
The clinicians achieve significant improvements in the sensitivity, specificity, and accuracy of diagnoses of certain hemorrhage etiologies with proposed system augmentation.
arXiv Detail & Related papers (2023-02-02T08:45:17Z) - A Novel Implementation of Machine Learning for the Efficient,
Explainable Diagnosis of COVID-19 from Chest CT [0.0]
The aim of this study was to take a novel approach in the machine learning-based detection of COVID-19 from chest CT scans.
The proposed model attained an overall accuracy of 0.927 and a sensitivity of 0.958.
arXiv Detail & Related papers (2022-06-15T18:35:22Z) - The pitfalls of using open data to develop deep learning solutions for
COVID-19 detection in chest X-rays [64.02097860085202]
Deep learning models have been developed to identify COVID-19 from chest X-rays.
Results have been exceptional when training and testing on open-source data.
Data analysis and model evaluations show that the popular open-source dataset COVIDx is not representative of the real clinical problem.
arXiv Detail & Related papers (2021-09-14T10:59:11Z) - Deep Learning in Detection and Diagnosis of Covid-19 using Radiology
Modalities: A Systematic Review [0.0]
Early detection and diagnosis of Covid-19 is one of the main challenges in the epidemic of Covid-19.
Medical and computer researchers tended to use machine-learning models to analyze radiology images.
Deep learning Based models have an extraordinary capacity to achieve an accurate and efficient system for the detection and diagnosis of Covid-19.
arXiv Detail & Related papers (2020-12-21T18:54:01Z) - Identification of Ischemic Heart Disease by using machine learning
technique based on parameters measuring Heart Rate Variability [50.591267188664666]
In this study, 18 non-invasive features (age, gender, left ventricular ejection fraction and 15 obtained from HRV) of 243 subjects were used to train and validate a series of several ANN.
The best result was obtained using 7 input parameters and 7 hidden nodes with an accuracy of 98.9% and 82% for the training and validation dataset.
arXiv Detail & Related papers (2020-10-29T19:14:41Z) - COVID-19 Classification of X-ray Images Using Deep Neural Networks [36.99143569437537]
The purpose of this study is to create and evaluate a machine learning model for diagnosis of COVID-19.
A machine learning model was built using a pre-trained deep learning model (ReNet50) and enhanced by data augmentation and lung segmentation.
The model was evaluated using accuracy, sensitivity, area under the curve (AUC) of receiver operating characteristic (ROC) curve and of the precision-recall (P-R) curve.
arXiv Detail & Related papers (2020-10-03T13:57:08Z) - Integrative Analysis for COVID-19 Patient Outcome Prediction [53.11258640541513]
We combine radiomics of lung opacities and non-imaging features from demographic data, vital signs, and laboratory findings to predict need for intensive care unit admission.
Our methods may also be applied to other lung diseases including but not limited to community acquired pneumonia.
arXiv Detail & Related papers (2020-07-20T19:08:50Z) - Deep Learning COVID-19 Features on CXR using Limited Training Data Sets [40.45289250518209]
We propose a patch-based convolutional neural network approach with a relatively small number of trainable parameters for COVID-19 diagnosis.
Experimental results show that our method achieves state-of-the-art performance and provides clinically interpretable saliency maps.
arXiv Detail & Related papers (2020-04-13T03:44:42Z) - Predicting the risk of pancreatic cancer with a CT-based ensemble AI
algorithm [0.0]
Pancreatic cancer is a lethal disease, hard to diagnose and results in poor prognosis and high mortality.
We propose an ensemble AI algorithm to predict universally cancer risk of all kinds of pancreatic lesions with noncontrast CT.
arXiv Detail & Related papers (2020-04-03T06:06:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.