論文の概要: Learning End-to-End Action Interaction by Paired-Embedding Data
Augmentation
- arxiv url: http://arxiv.org/abs/2007.08071v1
- Date: Thu, 16 Jul 2020 01:54:16 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-09 23:17:23.140714
- Title: Learning End-to-End Action Interaction by Paired-Embedding Data
Augmentation
- Title(参考訳): Paired-Embedding Data Augmentation によるエンドツーエンドアクションインタラクションの学習
- Authors: Ziyang Song, Zejian Yuan, Chong Zhang, Wanchao Chi, Yonggen Ling and
Shenghao Zhang
- Abstract要約: 新しいInteractive Action Translation (IAT)タスクは、ラベルなしのインタラクティブなペアからエンドツーエンドのアクションインタラクションを学ぶことを目的としている。
Paired-Embedding (PE) 法を提案する。
2つのデータセットの実験結果から,本手法の優れた効果と幅広い応用可能性が確認された。
- 参考スコア(独自算出の注目度): 10.857323240766428
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recognition-based action interaction, robots' responses to human actions
are often pre-designed according to recognized categories and thus stiff. In
this paper, we specify a new Interactive Action Translation (IAT) task which
aims to learn end-to-end action interaction from unlabeled interactive pairs,
removing explicit action recognition. To enable learning on small-scale data,
we propose a Paired-Embedding (PE) method for effective and reliable data
augmentation. Specifically, our method first utilizes paired relationships to
cluster individual actions in an embedding space. Then two actions originally
paired can be replaced with other actions in their respective neighborhood,
assembling into new pairs. An Act2Act network based on conditional GAN follows
to learn from augmented data. Besides, IAT-test and IAT-train scores are
specifically proposed for evaluating methods on our task. Experimental results
on two datasets show impressive effects and broad application prospects of our
method.
- Abstract(参考訳): 認識に基づく行動相互作用では、人間の行動に対するロボットの反応は認識されたカテゴリーに従って事前設計されることが多く、したがって硬い。
本稿では,ラベルなしの対話型ペアからエンドツーエンドのアクションインタラクションを学習し,明示的なアクション認識を解消することを目的とした,新しい対話型アクション翻訳(iat)タスクを提案する。
小規模データ上での学習を可能にするために,有効で信頼性の高いデータ拡張のためのペアエンベディング(pe)法を提案する。
具体的には,まず,組込み空間における個々の動作をクラスタ化するためのペア関係を利用する。
次に、最初にペア化された2つのアクションは、それぞれの近所の他のアクションに置き換えられ、新しいペアに組み立てられる。
条件付きGANに基づくAct2Actネットワークは、拡張データから学習する。
IAT-test と IAT-train のスコアは,タスクのメソッドの評価に特に有用である。
2つのデータセットにおける実験結果は印象的な効果を示し,本手法の幅広い応用可能性を示した。
関連論文リスト
- PEAR: Phrase-Based Hand-Object Interaction Anticipation [20.53329698350243]
ファースト・パーソン・ハンド・オブジェクト・インタラクション・予測は、現在のシーンとプロンプトに基づいてインタラクション・プロセスを予測することを目的としている。
既存の研究は通常、操作を無視しながら相互作用の意図だけを予測している。
インタラクションの意図と操作を共同で予測する新しいモデルPEARを提案する。
論文 参考訳(メタデータ) (2024-07-31T10:28:49Z) - Learning Manipulation by Predicting Interaction [85.57297574510507]
本稿では,インタラクションを予測して操作を学習する一般的な事前学習パイプラインを提案する。
実験の結果,MPIは従来のロボットプラットフォームと比較して10%から64%向上していることがわかった。
論文 参考訳(メタデータ) (2024-06-01T13:28:31Z) - The impact of Compositionality in Zero-shot Multi-label action recognition for Object-based tasks [4.971065912401385]
ゼロショットマルチラベル動作認識のための統一的なアプローチであるDual-VCLIPを提案する。
Dual-VCLIPは、マルチラベル画像分類のためのDualCoOp法を用いて、ゼロショット動作認識法であるVCLIPを強化する。
オブジェクトベースのアクションの大部分を含むCharadesデータセット上で,本手法の有効性を検証する。
論文 参考訳(メタデータ) (2024-05-14T15:28:48Z) - Disentangled Interaction Representation for One-Stage Human-Object
Interaction Detection [70.96299509159981]
ヒューマン・オブジェクト・インタラクション(HOI)検出は、人間中心の画像理解のコアタスクである。
最近のワンステージ手法では、対話予測に有用な画像ワイドキューの収集にトランスフォーマーデコーダを採用している。
従来の2段階の手法は、非絡み合いで説明可能な方法で相互作用特徴を構成する能力から大きな恩恵を受ける。
論文 参考訳(メタデータ) (2023-12-04T08:02:59Z) - Interactive segmentation in aerial images: a new benchmark and an open
access web-based tool [2.729446374377189]
近年,コンピュータビジョンにおける対話型セマンティックセマンティックセマンティクスは,人間とコンピュータの相互作用セマンティクスの理想的な状態を実現している。
本研究の目的は,対話型セグメンテーションモデルのベンチマークにより,対話型セグメンテーションとリモートセンシング分析のギャップを埋めることである。
論文 参考訳(メタデータ) (2023-08-25T04:49:49Z) - DOAD: Decoupled One Stage Action Detection Network [77.14883592642782]
人々をローカライズし、ビデオからアクションを認識することは、ハイレベルなビデオ理解にとって難しい課題だ。
既存の手法は主に2段階ベースで、1段階は人物境界ボックス生成、もう1段階は行動認識を行う。
本稿では、時間的行動検出の効率を向上させるために、DOADと呼ばれる分離したワンステージネットワークを提案する。
論文 参考訳(メタデータ) (2023-04-01T08:06:43Z) - Skeleton-Based Mutually Assisted Interacted Object Localization and
Human Action Recognition [111.87412719773889]
本研究では,骨格データに基づく「相互作用対象の局所化」と「人間の行動認識」のための共同学習フレームワークを提案する。
本手法は,人間の行動認識のための最先端の手法を用いて,最高の,あるいは競争的な性能を実現する。
論文 参考訳(メタデータ) (2021-10-28T10:09:34Z) - Few-Shot Fine-Grained Action Recognition via Bidirectional Attention and
Contrastive Meta-Learning [51.03781020616402]
現実世界のアプリケーションで特定のアクション理解の需要が高まっているため、きめ細かいアクション認識が注目を集めている。
そこで本研究では,各クラスに付与されるサンプル数だけを用いて,新規なきめ細かい動作を認識することを目的とした,数発のきめ細かな動作認識問題を提案する。
粒度の粗い動作では進展があったが、既存の数発の認識手法では、粒度の細かい動作を扱う2つの問題に遭遇する。
論文 参考訳(メタデータ) (2021-08-15T02:21:01Z) - Transferable Interactiveness Knowledge for Human-Object Interaction
Detection [46.89715038756862]
我々は,人間と物体が相互に相互作用するか否かを示す対話性知識を探索する。
対話性に関する知識は、HOIデータセット全体で学習でき、多様なHOIカテゴリ設定のギャップを埋めることができる。
私たちのコアアイデアは、対話性ネットワークを利用して、複数のHOIデータセットから一般的な対話性知識を学ぶことです。
論文 参考訳(メタデータ) (2021-01-25T18:21:07Z) - DCR-Net: A Deep Co-Interactive Relation Network for Joint Dialog Act
Recognition and Sentiment Classification [77.59549450705384]
ダイアログシステムでは、ダイアログアクト認識と感情分類は2つの相関タスクである。
既存のシステムのほとんどは、それらを別々のタスクとして扱うか、単に2つのタスクを一緒にモデル化するだけです。
本稿では,2つのタスク間の相互作用をモデル化するディープ・コ・インタラクティブ・リレーショナル・ネットワーク(DCR-Net)を提案する。
論文 参考訳(メタデータ) (2020-08-16T14:13:32Z) - Asynchronous Interaction Aggregation for Action Detection [43.34864954534389]
本稿では,異なるインタラクションを活用して動作検出を促進する非同期インタラクション集約ネットワーク(AIA)を提案する。
ひとつはインタラクション集約構造(IA)で、複数のタイプのインタラクションをモデル化し統合するための一様パラダイムを採用し、もうひとつはパフォーマンス向上を実現するための非同期メモリ更新アルゴリズム(AMU)です。
論文 参考訳(メタデータ) (2020-04-16T07:03:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。