PerMO: Perceiving More at Once from a Single Image for Autonomous
Driving
- URL: http://arxiv.org/abs/2007.08116v1
- Date: Thu, 16 Jul 2020 05:02:45 GMT
- Title: PerMO: Perceiving More at Once from a Single Image for Autonomous
Driving
- Authors: Feixiang Lu, Zongdai Liu, Xibin Song, Dingfu Zhou, Wei Li, Hui Miao,
Miao Liao, Liangjun Zhang, Bin Zhou, Ruigang Yang and Dinesh Manocha
- Abstract summary: We present a novel approach to detect, segment, and reconstruct complete textured 3D models of vehicles from a single image.
Our approach combines the strengths of deep learning and the elegance of traditional techniques.
We have integrated these algorithms with an autonomous driving system.
- Score: 76.35684439949094
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a novel approach to detect, segment, and reconstruct complete
textured 3D models of vehicles from a single image for autonomous driving. Our
approach combines the strengths of deep learning and the elegance of
traditional techniques from part-based deformable model representation to
produce high-quality 3D models in the presence of severe occlusions. We present
a new part-based deformable vehicle model that is used for instance
segmentation and automatically generate a dataset that contains dense
correspondences between 2D images and 3D models. We also present a novel
end-to-end deep neural network to predict dense 2D/3D mapping and highlight its
benefits. Based on the dense mapping, we are able to compute precise 6-DoF
poses and 3D reconstruction results at almost interactive rates on a commodity
GPU. We have integrated these algorithms with an autonomous driving system. In
practice, our method outperforms the state-of-the-art methods for all major
vehicle parsing tasks: 2D instance segmentation by 4.4 points (mAP), 6-DoF pose
estimation by 9.11 points, and 3D detection by 1.37. Moreover, we have released
all of the source code, dataset, and the trained model on Github.
Related papers
- 3DiffTection: 3D Object Detection with Geometry-Aware Diffusion Features [70.50665869806188]
3DiffTection is a state-of-the-art method for 3D object detection from single images.
We fine-tune a diffusion model to perform novel view synthesis conditioned on a single image.
We further train the model on target data with detection supervision.
arXiv Detail & Related papers (2023-11-07T23:46:41Z) - AutoAlignV2: Deformable Feature Aggregation for Dynamic Multi-Modal 3D
Object Detection [17.526914782562528]
We propose AutoAlignV2, a faster and stronger multi-modal 3D detection framework, built on top of AutoAlign.
Our best model reaches 72.4 NDS on nuScenes test leaderboard, achieving new state-of-the-art results.
arXiv Detail & Related papers (2022-07-21T06:17:23Z) - Image-to-Lidar Self-Supervised Distillation for Autonomous Driving Data [80.14669385741202]
We propose a self-supervised pre-training method for 3D perception models tailored to autonomous driving data.
We leverage the availability of synchronized and calibrated image and Lidar sensors in autonomous driving setups.
Our method does not require any point cloud nor image annotations.
arXiv Detail & Related papers (2022-03-30T12:40:30Z) - AutoShape: Real-Time Shape-Aware Monocular 3D Object Detection [15.244852122106634]
We propose an approach for incorporating the shape-aware 2D/3D constraints into the 3D detection framework.
Specifically, we employ the deep neural network to learn distinguished 2D keypoints in the 2D image domain.
For generating the ground truth of 2D/3D keypoints, an automatic model-fitting approach has been proposed.
arXiv Detail & Related papers (2021-08-25T08:50:06Z) - Using Adaptive Gradient for Texture Learning in Single-View 3D
Reconstruction [0.0]
Learning-based approaches for 3D model reconstruction have attracted attention owing to its modern applications.
We present a novel sampling algorithm by optimizing the gradient of predicted coordinates based on the variance on the sampling image.
We also adopt Frechet Inception Distance (FID) to form a loss function in learning, which helps bridging the gap between rendered images and input images.
arXiv Detail & Related papers (2021-04-29T07:52:54Z) - Robust 2D/3D Vehicle Parsing in CVIS [54.825777404511605]
We present a novel approach to robustly detect and perceive vehicles in different camera views as part of a cooperative vehicle-infrastructure system (CVIS)
Our formulation is designed for arbitrary camera views and makes no assumptions about intrinsic or extrinsic parameters.
In practice, our approach outperforms SOTA methods on 2D detection, instance segmentation, and 6-DoF pose estimation.
arXiv Detail & Related papers (2021-03-11T03:35:05Z) - SA-Det3D: Self-Attention Based Context-Aware 3D Object Detection [9.924083358178239]
We propose two variants of self-attention for contextual modeling in 3D object detection.
We first incorporate the pairwise self-attention mechanism into the current state-of-the-art BEV, voxel and point-based detectors.
Next, we propose a self-attention variant that samples a subset of the most representative features by learning deformations over randomly sampled locations.
arXiv Detail & Related papers (2021-01-07T18:30:32Z) - Fine-Grained Vehicle Perception via 3D Part-Guided Visual Data
Augmentation [77.60050239225086]
We propose an effective training data generation process by fitting a 3D car model with dynamic parts to vehicles in real images.
Our approach is fully automatic without any human interaction.
We present a multi-task network for VUS parsing and a multi-stream network for VHI parsing.
arXiv Detail & Related papers (2020-12-15T03:03:38Z) - DOPS: Learning to Detect 3D Objects and Predict their 3D Shapes [54.239416488865565]
We propose a fast single-stage 3D object detection method for LIDAR data.
The core novelty of our method is a fast, single-pass architecture that both detects objects in 3D and estimates their shapes.
We find that our proposed method achieves state-of-the-art results by 5% on object detection in ScanNet scenes, and it gets top results by 3.4% in the Open dataset.
arXiv Detail & Related papers (2020-04-02T17:48:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.