AutoShape: Real-Time Shape-Aware Monocular 3D Object Detection
- URL: http://arxiv.org/abs/2108.11127v1
- Date: Wed, 25 Aug 2021 08:50:06 GMT
- Title: AutoShape: Real-Time Shape-Aware Monocular 3D Object Detection
- Authors: Zongdai Liu, Dingfu Zhou, Feixiang Lu, Jin Fang and Liangjun Zhang
- Abstract summary: We propose an approach for incorporating the shape-aware 2D/3D constraints into the 3D detection framework.
Specifically, we employ the deep neural network to learn distinguished 2D keypoints in the 2D image domain.
For generating the ground truth of 2D/3D keypoints, an automatic model-fitting approach has been proposed.
- Score: 15.244852122106634
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing deep learning-based approaches for monocular 3D object detection in
autonomous driving often model the object as a rotated 3D cuboid while the
object's geometric shape has been ignored. In this work, we propose an approach
for incorporating the shape-aware 2D/3D constraints into the 3D detection
framework. Specifically, we employ the deep neural network to learn
distinguished 2D keypoints in the 2D image domain and regress their
corresponding 3D coordinates in the local 3D object coordinate first. Then the
2D/3D geometric constraints are built by these correspondences for each object
to boost the detection performance. For generating the ground truth of 2D/3D
keypoints, an automatic model-fitting approach has been proposed by fitting the
deformed 3D object model and the object mask in the 2D image. The proposed
framework has been verified on the public KITTI dataset and the experimental
results demonstrate that by using additional geometrical constraints the
detection performance has been significantly improved as compared to the
baseline method. More importantly, the proposed framework achieves
state-of-the-art performance with real time. Data and code will be available at
https://github.com/zongdai/AutoShape
Related papers
- DIRECT-3D: Learning Direct Text-to-3D Generation on Massive Noisy 3D Data [50.164670363633704]
We present DIRECT-3D, a diffusion-based 3D generative model for creating high-quality 3D assets from text prompts.
Our model is directly trained on extensive noisy and unaligned in-the-wild' 3D assets.
We achieve state-of-the-art performance in both single-class generation and text-to-3D generation.
arXiv Detail & Related papers (2024-06-06T17:58:15Z) - Joint-MAE: 2D-3D Joint Masked Autoencoders for 3D Point Cloud
Pre-training [65.75399500494343]
Masked Autoencoders (MAE) have shown promising performance in self-supervised learning for 2D and 3D computer vision.
We propose Joint-MAE, a 2D-3D joint MAE framework for self-supervised 3D point cloud pre-training.
arXiv Detail & Related papers (2023-02-27T17:56:18Z) - MvDeCor: Multi-view Dense Correspondence Learning for Fine-grained 3D
Segmentation [91.6658845016214]
We propose to utilize self-supervised techniques in the 2D domain for fine-grained 3D shape segmentation tasks.
We render a 3D shape from multiple views, and set up a dense correspondence learning task within the contrastive learning framework.
As a result, the learned 2D representations are view-invariant and geometrically consistent.
arXiv Detail & Related papers (2022-08-18T00:48:15Z) - Learning Geometry-Guided Depth via Projective Modeling for Monocular 3D Object Detection [70.71934539556916]
We learn geometry-guided depth estimation with projective modeling to advance monocular 3D object detection.
Specifically, a principled geometry formula with projective modeling of 2D and 3D depth predictions in the monocular 3D object detection network is devised.
Our method remarkably improves the detection performance of the state-of-the-art monocular-based method without extra data by 2.80% on the moderate test setting.
arXiv Detail & Related papers (2021-07-29T12:30:39Z) - FCOS3D: Fully Convolutional One-Stage Monocular 3D Object Detection [78.00922683083776]
It is non-trivial to make a general adapted 2D detector work in this 3D task.
In this technical report, we study this problem with a practice built on fully convolutional single-stage detector.
Our solution achieves 1st place out of all the vision-only methods in the nuScenes 3D detection challenge of NeurIPS 2020.
arXiv Detail & Related papers (2021-04-22T09:35:35Z) - Cylinder3D: An Effective 3D Framework for Driving-scene LiDAR Semantic
Segmentation [87.54570024320354]
State-of-the-art methods for large-scale driving-scene LiDAR semantic segmentation often project and process the point clouds in the 2D space.
A straightforward solution to tackle the issue of 3D-to-2D projection is to keep the 3D representation and process the points in the 3D space.
We develop a 3D cylinder partition and a 3D cylinder convolution based framework, termed as Cylinder3D, which exploits the 3D topology relations and structures of driving-scene point clouds.
arXiv Detail & Related papers (2020-08-04T13:56:19Z) - HOPE-Net: A Graph-based Model for Hand-Object Pose Estimation [7.559220068352681]
We propose a lightweight model called HOPE-Net which jointly estimates hand and object pose in 2D and 3D in real-time.
Our network uses a cascade of two adaptive graph convolutional neural networks, one to estimate 2D coordinates of the hand joints and object corners, followed by another to convert 2D coordinates to 3D.
arXiv Detail & Related papers (2020-03-31T19:01:42Z) - SMOKE: Single-Stage Monocular 3D Object Detection via Keypoint
Estimation [3.1542695050861544]
Estimating 3D orientation and translation of objects is essential for infrastructure-less autonomous navigation and driving.
We propose a novel 3D object detection method, named SMOKE, that combines a single keypoint estimate with regressed 3D variables.
Despite of its structural simplicity, our proposed SMOKE network outperforms all existing monocular 3D detection methods on the KITTI dataset.
arXiv Detail & Related papers (2020-02-24T08:15:36Z) - RTM3D: Real-time Monocular 3D Detection from Object Keypoints for
Autonomous Driving [26.216609821525676]
Most successful 3D detectors take the projection constraint from the 3D bounding box to the 2D box as an important component.
Our method predicts the nine perspective keypoints of a 3D bounding box in image space, and then utilize the geometric relationship of 3D and 2D perspectives to recover the dimension, location, and orientation in 3D space.
Our method is the first real-time system for monocular image 3D detection while achieves state-of-the-art performance on the KITTI benchmark.
arXiv Detail & Related papers (2020-01-10T08:29:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.