Multiphoton pulses interacting with multiple emitters in a
one-dimensional waveguide
- URL: http://arxiv.org/abs/2007.08289v2
- Date: Thu, 5 Nov 2020 13:09:50 GMT
- Title: Multiphoton pulses interacting with multiple emitters in a
one-dimensional waveguide
- Authors: Zeyang Liao and Yunning Lu and M. Suhail Zubairy
- Abstract summary: We derive a master equation for multiphoton pulses interacting with multiple emitters in a waveguide-quantum electrodynamics system.
We can calculate the real-time dynamics of an array of interacting emitters driven by an incident photon pulse.
Our theory can find important applications in the study of waveguide-based quantum systems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We derive a generalized master equation for multiphoton pulses interacting
with multiple emitters in a waveguide-quantum electrodynamics system where the
emitter frequency can be modulated and the effects of non-guided modes can also
be considered. Based on this theory, we can calculate the real-time dynamics of
an array of interacting emitters driven by an incident photon pulse which can
be vacuum, a coherent state, a Fock state or their superpositions. Moreover, we
also derive generalized input-output relations to calculate the reflectivity
and transmissivity of this system. We can also calculate the output photon
pulse shapes. Our theory can find important applications in the study of
waveguide-based quantum systems.
Related papers
- Theory and simulations of few-photon Fock state pulses strongly interacting with a single qubit in a waveguide: exact population dynamics and time-dependent spectra [0.5852077003870417]
We present a detailed quantum theory and simulations of a few-photon Fock state pulse interacting with a two-level system (TLS) in a waveguide.
For a rectangular pulse shape, we present an exact temporal scattering theory for the waveguide-QED system to derive analytical expressions for the TLS population.
Numerically, we also present matrix product state (MPS) simulations, which allow us to compute more general photon correlation functions for arbitrary quantum pulses.
arXiv Detail & Related papers (2024-09-27T20:59:00Z) - Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Resonant Parametric Photon Generation in Waveguide-coupled Quantum Emitter Arrays [83.88591755871734]
We have developed a theory of parametric photon generation in the waveguides coupled to arrays of quantum emitters with temporally modulated resonance frequencies.
Such generation can be interpreted as a dynamical Casimir effect.
We demonstrate numerically and analytically how the emission directionality and photon-photon correlations can be controlled by the phases of the modulation.
arXiv Detail & Related papers (2023-02-24T18:07:49Z) - Interaction of quantum systems with single pulses of quantized radiation [68.8204255655161]
We describe the interaction of a propagating pulse of quantum radiation with a localized quantum system.
By transformation to an appropriate picture, we identify the usual Jaynes-Cummings Hamiltonian between the scatterer and a superposition of the initial and final mode.
The transformed master equation offers important insights into the system dynamics and it permits numerically efficient solutions.
arXiv Detail & Related papers (2022-03-14T20:23:23Z) - Deterministic Photon Sorting in Waveguide QED Systems [3.4756461334223228]
We show that a pair of two-level emitters, chirally coupled to a waveguide, may scatter single- and two-photon components of an input pulse into temporal modes with a fidelity $gtrsim 0.9997$.
The presented scheme can be employed to construct logic elements for propagating photons, such as a deterministic nonlinear-sign gate with a fidelity $gtrsim 0.9995$.
arXiv Detail & Related papers (2022-02-14T19:20:05Z) - Dynamical emission of phonon pairs in optomechanical systems [6.259066812918972]
Multiphonon state plays an important role in quantum information processing and quantum metrology.
We propose a scheme to realize dynamical emission of phonon pairs based on the technique of stimulated Raman adiabatic passage in a single cavity optomechanical system.
Our proposal can be extended to achieve an antibunched $n$-phonon emitter, which has potential applications for on-chip quantum communications.
arXiv Detail & Related papers (2021-12-26T09:45:56Z) - Heisenberg treatment of multiphoton pulses in waveguide QED with
time-delayed feedback [62.997667081978825]
We propose a projection onto a complete set of states in the Hilbert space to decompose the multi-time correlations into single-time matrix elements.
We consider the paradigmatic example of a two-level system that couples to a semi-infinite waveguide and interacts with quantum light pulses.
arXiv Detail & Related papers (2021-11-04T12:29:25Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Quantum interactions with pulses of radiation [77.34726150561087]
This article presents a general master equation formalism for the interaction between travelling pulses of quantum radiation and localized quantum systems.
We develop a complete input-output theory to describe the driving of quantum systems by arbitrary incident pulses of radiation and the quantum state of the field emitted into any desired outgoing temporal mode.
arXiv Detail & Related papers (2020-03-10T08:35:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.