Resonant Parametric Photon Generation in Waveguide-coupled Quantum Emitter Arrays
- URL: http://arxiv.org/abs/2302.12792v2
- Date: Mon, 6 May 2024 09:45:15 GMT
- Title: Resonant Parametric Photon Generation in Waveguide-coupled Quantum Emitter Arrays
- Authors: Egor S. Vyatkin, Alexander V. Poshakinskiy, Alexander N. Poddubny,
- Abstract summary: We have developed a theory of parametric photon generation in the waveguides coupled to arrays of quantum emitters with temporally modulated resonance frequencies.
Such generation can be interpreted as a dynamical Casimir effect.
We demonstrate numerically and analytically how the emission directionality and photon-photon correlations can be controlled by the phases of the modulation.
- Score: 83.88591755871734
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We have developed a theory of parametric photon generation in the waveguides coupled to arrays of quantum emitters with temporally modulated resonance frequencies. Such generation can be interpreted as a dynamical Casimir effect. We demonstrate numerically and analytically how the emission directionality and photon-photon correlations can be controlled by the phases of the modulation. The emission spectrum is shown to be strongly dependent on the anharmonicity of the emitter potential. Single- and double-excited state resonances have been identified in the emission spectrum.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Coherent Control of an Optical Quantum Dot Using Phonons and Photons [5.1635749330879905]
We describe unique features and advantages of optical two-level systems, or qubits, for optomechanics.
The qubit state can be coherently controlled using both phonons and resonant or detuned photons.
Time-correlated single-photon counting measurements reveal the control of QD population dynamics.
arXiv Detail & Related papers (2024-04-02T16:25:35Z) - Tunable photon-photon correlations in waveguide QED systems with giant
atoms [4.520321677645778]
We investigate the scattering processes of two photons in a one-dimensional waveguide coupled to two giant atoms.
By adjusting the accumulated phase shifts between the coupling points, we are able to effectively manipulate the characteristics of these scattering photons.
arXiv Detail & Related papers (2023-11-07T09:02:28Z) - Two-photon pulse scattering spectroscopy for arrays of two-level atoms,
coupled to the waveguide [125.99533416395765]
We have theoretically studied the scattering of two-photon pulses from a spatially-separated array of two-level atoms coupled to a waveguide.
The contributions of various single-eigenstate and double-excited eigenstates of the array have been analyzed.
arXiv Detail & Related papers (2023-02-27T22:05:07Z) - Probing the Optical Dynamics of Quantum Emitters in Hexagonal Boron
Nitride [0.0]
Hexagonal boron nitride is a van der Waals material that hosts visible-wavelength quantum emitters at room temperature.
Here, we probe the optical dynamics of quantum emitters in hexagonal boron nitride using photon emission correlation spectroscopy.
arXiv Detail & Related papers (2022-01-21T20:12:53Z) - Superradiance in dynamically modulated Tavis-Cumming model with spectral
disorder [62.997667081978825]
Superradiance is the enhanced emission of photons from quantum emitters collectively coupling to the same optical mode.
We study the interplay between superradiance and spectral disorder in a dynamically modulated Tavis-Cummings model.
arXiv Detail & Related papers (2021-08-18T21:29:32Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Theory of waveguide-QED with moving emitters [68.8204255655161]
We study a system composed by a waveguide and a moving quantum emitter in the single excitation subspace.
We first characterize single-photon scattering off a single moving quantum emitter, showing both nonreciprocal transmission and recoil-induced reduction of the quantum emitter motional energy.
arXiv Detail & Related papers (2020-03-20T12:14:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.