論文の概要: Hierarchical Interaction Networks with Rethinking Mechanism for
Document-level Sentiment Analysis
- arxiv url: http://arxiv.org/abs/2007.08445v4
- Date: Wed, 7 Sep 2022 17:28:20 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-09 23:06:41.681729
- Title: Hierarchical Interaction Networks with Rethinking Mechanism for
Document-level Sentiment Analysis
- Title(参考訳): 文書レベルの知覚分析のための階層的相互作用ネットワークと再考機構
- Authors: Lingwei Wei, Dou Hu, Wei Zhou, Xuehai Tang, Xiaodan Zhang, Xin Wang,
Jizhong Han, Songlin Hu
- Abstract要約: 文書レベルの感性分析(DSA)は、あいまいなセマンティックリンクと感情情報の複雑化により、より困難である。
そこで本研究では,DSAにおける対象の明示的パターンと感情文脈を用いた識別表現を効果的に生成する方法について検討する。
感性に基づく再考機構(SR)を,感情ラベル情報を用いてHINを精製し,より感情に敏感な文書表現を学習することによって設計する。
- 参考スコア(独自算出の注目度): 37.20068256769269
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Document-level Sentiment Analysis (DSA) is more challenging due to vague
semantic links and complicate sentiment information. Recent works have been
devoted to leveraging text summarization and have achieved promising results.
However, these summarization-based methods did not take full advantage of the
summary including ignoring the inherent interactions between the summary and
document. As a result, they limited the representation to express major points
in the document, which is highly indicative of the key sentiment. In this
paper, we study how to effectively generate a discriminative representation
with explicit subject patterns and sentiment contexts for DSA. A Hierarchical
Interaction Networks (HIN) is proposed to explore bidirectional interactions
between the summary and document at multiple granularities and learn
subject-oriented document representations for sentiment classification.
Furthermore, we design a Sentiment-based Rethinking mechanism (SR) by refining
the HIN with sentiment label information to learn a more sentiment-aware
document representation. We extensively evaluate our proposed models on three
public datasets. The experimental results consistently demonstrate the
effectiveness of our proposed models and show that HIN-SR outperforms various
state-of-the-art methods.
- Abstract(参考訳): 文書レベルの感性分析(DSA)は、あいまいなセマンティックリンクと感情情報の複雑化により、より困難である。
近年,テキスト要約の活用に力を入れ,有望な成果を上げている。
しかし、これらの要約に基づく手法は、要約と文書間の固有の相互作用を無視するなど、要約を十分に活用しなかった。
結果として、彼らは文書の中の主要な点を表現するために表現を制限した。
そこで本研究では,DSAにおける明示的な主題パターンと感情文脈を用いた識別表現を効果的に生成する方法を提案する。
複数の粒度で要約と文書の双方向インタラクションを探索し,感情分類のための主観指向文書表現を学習するために階層的相互作用ネットワーク(hin)を提案する。
さらに,感性に基づく再考機構 (SR) を設計し,感性ラベル情報を用いてHINを精製し,感性に配慮した文書表現を学習する。
提案したモデルを3つの公開データセット上で広範囲に評価する。
実験結果は,提案モデルの有効性を一貫して示し,HIN-SRが様々な最先端手法より優れていることを示す。
関連論文リスト
- GEGA: Graph Convolutional Networks and Evidence Retrieval Guided Attention for Enhanced Document-level Relation Extraction [15.246183329778656]
ドキュメントレベルの関係抽出(DocRE)は、構造化されていない文書テキストからエンティティ間の関係を抽出することを目的としている。
これらの課題を克服するために,DocREの新しいモデルであるGEGAを提案する。
我々は、広く使用されている3つのベンチマークデータセット、DocRED、Re-DocRED、Revisit-DocREDでGEGAモデルを評価する。
論文 参考訳(メタデータ) (2024-07-31T07:15:33Z) - Hypergraph based Understanding for Document Semantic Entity Recognition [65.84258776834524]
我々は,ハイパグラフアテンションを利用したハイパグラフアテンション文書セマンティックエンティティ認識フレームワークHGAを構築し,エンティティ境界とエンティティカテゴリを同時に重視する。
FUNSD, CORD, XFUNDIE で得られた結果は,本手法が意味的エンティティ認識タスクの性能を効果的に向上できることを示す。
論文 参考訳(メタデータ) (2024-07-09T14:35:49Z) - Syntax-Informed Interactive Model for Comprehensive Aspect-Based
Sentiment Analysis [0.0]
総合ABSAのためのシンタクティック・依存性強化マルチタスクインタラクション・アーキテクチャ(SDEMTIA)を提案する。
我々のアプローチは、SDEIN(Syntactic Dependency Embedded Interactive Network)を用いた構文知識(依存関係と型)を革新的に活用する。
また,学習効率を高めるために,マルチタスク学習フレームワークに,新規で効率的なメッセージパッシング機構を組み込んだ。
論文 参考訳(メタデータ) (2023-11-28T16:03:22Z) - Robust Saliency-Aware Distillation for Few-shot Fine-grained Visual
Recognition [57.08108545219043]
サンプルが少ない新しいサブカテゴリを認識することは、コンピュータビジョンにおいて不可欠で挑戦的な研究課題である。
既存の文献は、ローカルベースの表現アプローチを採用することでこの問題に対処している。
本稿では,ロバスト・サリエンシ・アウェア蒸留法(RSaD)を提案する。
論文 参考訳(メタデータ) (2023-05-12T00:13:17Z) - Contrastive Learning for Neural Topic Model [14.65513836956786]
敵対的トピックモデル(ATM)は、文書を別の異なるサンプルと区別することで、文書の意味パターンをうまくキャプチャすることができる。
最適化問題として識別目標を再定式化するための新しい手法を提案し,新しいサンプリング手法を設計する。
実験の結果、我々のフレームワークは3つの一般的なベンチマークデータセットにおいて、他の最先端のニューラルトピックモデルよりも優れていることが示された。
論文 参考訳(メタデータ) (2021-10-25T09:46:26Z) - SAIS: Supervising and Augmenting Intermediate Steps for Document-Level
Relation Extraction [51.27558374091491]
本稿では,関係抽出のための中間ステップ(SAIS)を監督し,拡張することにより,関連コンテキストやエンティティタイプをキャプチャするモデルを明示的に教えることを提案する。
そこで本提案手法は,より効果的な管理を行うため,より優れた品質の関係を抽出するだけでなく,それに対応する証拠をより正確に抽出する。
論文 参考訳(メタデータ) (2021-09-24T17:37:35Z) - Deep Context- and Relation-Aware Learning for Aspect-based Sentiment
Analysis [3.7175198778996483]
本研究では,深い文脈情報を持つサブタスク間での対話的関係を実現するディープ・コンテクスチュアライズド・リレーア・アウェア・ネットワーク(DCRAN)を提案する。
DCRANは3つの広く使用されているベンチマークにおいて、従来の最先端の手法よりも大きなマージンで優れている。
論文 参考訳(メタデータ) (2021-06-07T17:16:15Z) - A Hierarchical Network for Abstractive Meeting Summarization with
Cross-Domain Pretraining [52.11221075687124]
本稿では,会議シナリオに適応する抽象的要約ネットワークを提案する。
提案手法は,長時間の会議記録に対応する階層構造と,話者間の差異を表現する役割ベクトルを設計する。
我々のモデルは、自動測定と人的評価の両方において、過去のアプローチよりも優れています。
論文 参考訳(メタデータ) (2020-04-04T21:00:41Z) - A Dependency Syntactic Knowledge Augmented Interactive Architecture for
End-to-End Aspect-based Sentiment Analysis [73.74885246830611]
エンドツーエンドABSAのためのマルチタスク学習を用いた対話型アーキテクチャを新たに提案する。
このモデルは、よく設計された依存性関係埋め込みグラフ畳み込みネットワーク(DreGcn)を活用することで、構文知識(依存性関係と型)を完全に活用することができる。
3つのベンチマークデータセットの大規模な実験結果から,本手法の有効性が示された。
論文 参考訳(メタデータ) (2020-04-04T14:59:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。