論文の概要: Detecting Deepfake Videos: An Analysis of Three Techniques
- arxiv url: http://arxiv.org/abs/2007.08517v1
- Date: Wed, 15 Jul 2020 20:36:23 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-10 05:37:35.421169
- Title: Detecting Deepfake Videos: An Analysis of Three Techniques
- Title(参考訳): deepfakeビデオの検出:3つのテクニックの分析
- Authors: Armaan Pishori, Brittany Rollins, Nicolas van Houten, Nisha Chatwani,
Omar Uraimov
- Abstract要約: 近年のディープフェイク生成アルゴリズムの進歩は、プライバシー、セキュリティ、大量通信に危険な影響を与えている。
この問題に対処する努力は、ディープフェイクを検出するためのコンペティションや研究資金の形で盛り上がっています。
本稿では,Deepfake Detection Challengeに参加する際に,畳み込みLSTM,目まき検出,グレースケールヒストグラムの3つの手法とアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in deepfake generating algorithms that produce manipulated
media have had dangerous implications in privacy, security and mass
communication. Efforts to combat this issue have risen in the form of
competitions and funding for research to detect deepfakes. This paper presents
three techniques and algorithms: convolutional LSTM, eye blink detection and
grayscale histograms-pursued while participating in the Deepfake Detection
Challenge. We assessed the current knowledge about deepfake videos, a more
severe version of manipulated media, and previous methods used, and found
relevance in the grayscale histogram technique over others. We discussed the
implications of each method developed and provided further steps to improve the
given findings.
- Abstract(参考訳): ディープフェイク生成アルゴリズムの最近の進歩は、プライバシー、セキュリティ、大量通信に危険な影響を与えている。
この問題に対処する努力は、ディープフェイクを検出するためのコンペティションや研究資金の形で盛り上がっています。
本稿では,Deepfake Detection Challengeに参加する際に,畳み込みLSTM,目まき検出,グレースケールヒストグラムの3つの手法とアルゴリズムを提案する。
ディープフェイクビデオ,より厳格な操作されたメディア,および従来の手法に関する現在の知識を評価し,グレースケールのヒストグラム手法に他よりも関連性を見いだした。
提案手法の有効性を考察し,得られた結果を改善するためのさらなるステップを提供した。
関連論文リスト
- Understanding Audiovisual Deepfake Detection: Techniques, Challenges, Human Factors and Perceptual Insights [49.81915942821647]
ディープラーニングは様々な分野に適用され、ディープフェイク検出への影響は例外ではない。
ディープフェイク(英: Deepfakes)は、政治的偽造、フィッシング、スランダリング、偽情報の拡散に偽装的に使用できる、偽物だが現実的な合成コンテンツである。
本稿では,ディープフェイク検出戦略の有効性を改善し,サイバーセキュリティとメディアの整合性に関する今後の研究を導くことを目的とする。
論文 参考訳(メタデータ) (2024-11-12T09:02:11Z) - Deepfake detection in videos with multiple faces using geometric-fakeness features [79.16635054977068]
被害者や人物のディープフェイクは、脅迫、ゆがみ、金融詐欺の詐欺師によって使用される。
本研究では,映像中の顔の存在の動的度を特徴付ける幾何学的フェイクネス機能(GFF)を提案する。
我々は、ビデオに同時に存在する複数の顔でビデオを分析するために、我々のアプローチを採用している。
論文 参考訳(メタデータ) (2024-10-10T13:10:34Z) - Deep Learning Technology for Face Forgery Detection: A Survey [17.519617618071003]
ディープラーニングにより、高忠実度顔画像やビデオの作成や操作が可能になった。
この技術はディープフェイクとしても知られ、劇的な進歩を遂げ、ソーシャルメディアで人気を博している。
ディープフェイクのリスクを低減するため、強力な偽造検出方法を開発することが望ましい。
論文 参考訳(メタデータ) (2024-09-22T01:42:01Z) - Comparative Analysis of Deep-Fake Algorithms [0.0]
ディープフェイク(Deepfakes)は、ディープラーニングベースのフェイクビデオとしても知られており、近年大きな関心を集めている。
これらのディープフェイクビデオは、誤った情報を広めたり、個人を偽装したり、フェイクニュースを作るといった悪質な目的で使用することができる。
ディープフェイク検出技術は、顔認識、モーション分析、音声と視覚の同期といった様々なアプローチを使用する。
論文 参考訳(メタデータ) (2023-09-06T18:17:47Z) - Voice-Face Homogeneity Tells Deepfake [56.334968246631725]
既存の検出アプローチは、ディープフェイクビデオにおける特定のアーティファクトの探索に寄与する。
未探索の音声-顔のマッチングビューからディープフェイク検出を行う。
我々のモデルは、他の最先端の競合と比較して、大幅に性能が向上する。
論文 参考訳(メタデータ) (2022-03-04T09:08:50Z) - A Survey on Masked Facial Detection Methods and Datasets for Fighting
Against COVID-19 [64.88701052813462]
新型コロナウイルス感染症2019(COVID-19)は、感染拡大以来、世界にとって大きな課題となっている。
この病気と闘うために、一連の人工知能(AI)技術が開発され、現実世界のシナリオに適用される。
本稿では主に、マスク付き顔検出と関連するデータセットのAI技術に焦点を当てる。
論文 参考訳(メタデータ) (2022-01-13T03:28:20Z) - M2TR: Multi-modal Multi-scale Transformers for Deepfake Detection [74.19291916812921]
Deepfake技術によって生成された鍛造画像は、デジタル情報の信頼性に深刻な脅威をもたらします。
本稿では,Deepfake検出のための微妙な操作アーチファクトを異なるスケールで捉えることを目的とする。
最先端の顔スワッピングと顔の再現方法によって生成された4000のDeepFakeビデオで構成される高品質のDeepFakeデータセットSR-DFを紹介します。
論文 参考訳(メタデータ) (2021-04-20T05:43:44Z) - Deepfakes Generation and Detection: State-of-the-art, open challenges,
countermeasures, and way forward [2.15242029196761]
不正情報、リベンジポルノ、金融詐欺、詐欺、政府機能を妨害するディープフェイクを発生させることが可能である。
オーディオとビデオの両方のディープフェイクの検出と生成のアプローチをレビューする試みは行われていない。
本稿では、deepfake生成のための既存のツールと機械学習(ml)ベースのアプローチの包括的なレビューと詳細な分析を提供する。
論文 参考訳(メタデータ) (2021-02-25T18:26:50Z) - A Convolutional LSTM based Residual Network for Deepfake Video Detection [23.275080108063406]
我々は、深層ビデオを検出するための畳み込みLSTMベースのResidual Network(CLRNet)を開発した。
また,異なるディープフェイク手法を一般化するための伝達学習に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2020-09-16T05:57:06Z) - VideoForensicsHQ: Detecting High-quality Manipulated Face Videos [77.60295082172098]
偽造検知器の性能は、人間の目で見られる人工物の存在にどのように依存するかを示す。
前例のない品質の顔ビデオ偽造検出のための新しいベンチマークデータセットを導入する。
論文 参考訳(メタデータ) (2020-05-20T21:17:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。