Leveraging the Self-Transition Probability of Ordinal Pattern Transition
Graph for Transportation Mode Classification
- URL: http://arxiv.org/abs/2007.08687v1
- Date: Thu, 16 Jul 2020 23:25:09 GMT
- Title: Leveraging the Self-Transition Probability of Ordinal Pattern Transition
Graph for Transportation Mode Classification
- Authors: I. Cardoso-Pereira, J. B. Borges, P. H. Barros, A. F. Loureiro, O. A.
Rosso, H. S. Ramos
- Abstract summary: We propose the use of a feature retained from the Ordinal Pattern Transition Graph, called the probability of self-transition for transportation mode classification.
The proposed feature presents better accuracy results than Permutation Entropy and Statistical Complexity, even when these two are combined.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The analysis of GPS trajectories is a well-studied problem in Urban Computing
and has been used to track people. Analyzing people mobility and identifying
the transportation mode used by them is essential for cities that want to
reduce traffic jams and travel time between their points, thus helping to
improve the quality of life of citizens. The trajectory data of a moving object
is represented by a discrete collection of points through time, i.e., a time
series. Regarding its interdisciplinary and broad scope of real-world
applications, it is evident the need of extracting knowledge from time series
data. Mining this type of data, however, faces several complexities due to its
unique properties. Different representations of data may overcome this. In this
work, we propose the use of a feature retained from the Ordinal Pattern
Transition Graph, called the probability of self-transition for transportation
mode classification. The proposed feature presents better accuracy results than
Permutation Entropy and Statistical Complexity, even when these two are
combined. This is the first work, to the best of our knowledge, that uses
Information Theory quantifiers to transportation mode classification, showing
that it is a feasible approach to this kind of problem.
Related papers
- Link Representation Learning for Probabilistic Travel Time Estimation [21.092166159353702]
In this paper, we propose to model trip-level link travel time using a Gaussian hierarchical model.
The results demonstrate its superior performance compared to state-of-the-art deterministic and probabilistic baselines.
We find that the learned link representations align well with the physical geometry of the network, making them suitable as input for other applications.
arXiv Detail & Related papers (2024-07-08T13:01:53Z) - Deep Temporal Deaggregation: Large-Scale Spatio-Temporal Generative Models [5.816964541847194]
We propose a transformer-based diffusion model, TDDPM, for time-series which outperforms and scales substantially better than state-of-the-art.
This is evaluated in a new comprehensive benchmark across several sequence lengths, standard datasets, and evaluation measures.
arXiv Detail & Related papers (2024-06-18T09:16:11Z) - Dynamic Frequency Domain Graph Convolutional Network for Traffic
Forecasting [33.538633286142264]
Time-Shift of traffic patterns and noise induced by random factors hinder data-driven spatial dependence modeling.
We propose a novel dynamic frequency domain graph convolution network (DFDGCN) to capture spatial dependencies.
Our model is effective and outperforms the baselines in experiments on four real-world datasets.
arXiv Detail & Related papers (2023-12-19T08:20:09Z) - Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
Long-term urban mobility predictions play a crucial role in the effective management of urban facilities and services.
Traditionally, urban mobility data has been structured as videos, treating longitude and latitude as fundamental pixels.
In our research, we introduce a fresh perspective on urban mobility prediction.
Instead of oversimplifying urban mobility data as traditional video data, we regard it as a complex time series.
arXiv Detail & Related papers (2023-12-04T07:39:05Z) - Spatio-Temporal Graph Few-Shot Learning with Cross-City Knowledge
Transfer [58.6106391721944]
Cross-city knowledge has shown its promise, where the model learned from data-sufficient cities is leveraged to benefit the learning process of data-scarce cities.
We propose a model-agnostic few-shot learning framework for S-temporal graph called ST-GFSL.
We conduct comprehensive experiments on four traffic speed prediction benchmarks and the results demonstrate the effectiveness of ST-GFSL compared with state-of-the-art methods.
arXiv Detail & Related papers (2022-05-27T12:46:52Z) - Averaging Spatio-temporal Signals using Optimal Transport and Soft
Alignments [110.79706180350507]
We show that our proposed loss can be used to define temporal-temporal baryechecenters as Fr'teche means duality.
Experiments on handwritten letters and brain imaging data confirm our theoretical findings.
arXiv Detail & Related papers (2022-03-11T09:46:22Z) - Spatial-Temporal Correlation and Topology Learning for Person
Re-Identification in Videos [78.45050529204701]
We propose a novel framework to pursue discriminative and robust representation by modeling cross-scale spatial-temporal correlation.
CTL utilizes a CNN backbone and a key-points estimator to extract semantic local features from human body.
It explores a context-reinforced topology to construct multi-scale graphs by considering both global contextual information and physical connections of human body.
arXiv Detail & Related papers (2021-04-15T14:32:12Z) - Gravitational Models Explain Shifts on Human Visual Attention [80.76475913429357]
Visual attention refers to the human brain's ability to select relevant sensory information for preferential processing.
Various methods to estimate saliency have been proposed in the last three decades.
We propose a gravitational model (GRAV) to describe the attentional shifts.
arXiv Detail & Related papers (2020-09-15T10:12:41Z) - Hidden Footprints: Learning Contextual Walkability from 3D Human Trails [70.01257397390361]
Current datasets only tell you where people are, not where they could be.
We first augment the set of valid, labeled walkable regions by propagating person observations between images, utilizing 3D information to create what we call hidden footprints.
We devise a training strategy designed for such sparse labels, combining a class-balanced classification loss with a contextual adversarial loss.
arXiv Detail & Related papers (2020-08-19T23:19:08Z) - Study on Key Technologies of Transit Passengers Travel Pattern Mining
and Applications based on Multiple Sources of Data [1.370633147306388]
We propose a series of methodologies to mine transit riders travel pattern and behavioral preferences.
We use these knowledges to adjust and optimize the transit systems.
arXiv Detail & Related papers (2020-05-26T22:35:28Z) - Station-to-User Transfer Learning: Towards Explainable User Clustering
Through Latent Trip Signatures Using Tidal-Regularized Non-Negative Matrix
Factorization [4.713006935605146]
This work focuses on mobility data and how it will help improve our understanding of urban mobility patterns.
We propose a Collective Learning Framework through Latent Representation, which augments user-level learning with collective patterns learned from station-level signals.
We provide a qualitative analysis of the station functions and user profiles for the Washington D.C. metro and show how our method supports intra-city mobility exploration.
arXiv Detail & Related papers (2020-04-27T14:13:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.