Deep Temporal Deaggregation: Large-Scale Spatio-Temporal Generative Models
- URL: http://arxiv.org/abs/2406.12423v1
- Date: Tue, 18 Jun 2024 09:16:11 GMT
- Title: Deep Temporal Deaggregation: Large-Scale Spatio-Temporal Generative Models
- Authors: David Bergström, Mattias Tiger, Fredrik Heintz,
- Abstract summary: We propose a transformer-based diffusion model, TDDPM, for time-series which outperforms and scales substantially better than state-of-the-art.
This is evaluated in a new comprehensive benchmark across several sequence lengths, standard datasets, and evaluation measures.
- Score: 5.816964541847194
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Many of today's data is time-series data originating from various sources, such as sensors, transaction systems, or production systems. Major challenges with such data include privacy and business sensitivity. Generative time-series models have the potential to overcome these problems, allowing representative synthetic data, such as people's movement in cities, to be shared openly and be used to the benefit of society at large. However, contemporary approaches are limited to prohibitively short sequences and small scales. Aside from major memory limitations, the models generate less accurate and less representative samples the longer the sequences are. This issue is further exacerbated by the lack of a comprehensive and accessible benchmark. Furthermore, a common need in practical applications is what-if analysis and dynamic adaptation to data distribution changes, for usage in decision making and to manage a changing world: What if this road is temporarily blocked or another road is added? The focus of this paper is on mobility data, such as people's movement in cities, requiring all these issues to be addressed. To this end, we propose a transformer-based diffusion model, TDDPM, for time-series which outperforms and scales substantially better than state-of-the-art. This is evaluated in a new comprehensive benchmark across several sequence lengths, standard datasets, and evaluation measures. We also demonstrate how the model can be conditioned on a prior over spatial occupancy frequency information, allowing the model to generate mobility data for previously unseen environments and for hypothetical scenarios where the underlying road network and its usage changes. This is evaluated by training on mobility data from part of a city. Then, using only aggregate spatial information as prior, we demonstrate out-of-distribution generalization to the unobserved remainder of the city.
Related papers
- Evaluating the Generalization Ability of Spatiotemporal Model in Urban Scenario [11.208740750755025]
We propose a Spatiotemporal Out-of-Distribution (ST-OOD) benchmark, which comprises six urban scenario: bike-sharing, 311 services, pedestrian traffic speed, traffic flow, ride-hailing demand, and bike-sharing.
We extensively evaluate state-of-the-arttemporal models and find that their performance degrades significantly in out-of-distribution settings, with most models performing even worse than a simple Multi-Layer Perceptron (MLP)
Our results showed that a slight dropout rate could significantly improve generalization performance on most datasets, with minimal impact on in-distribution performance.
arXiv Detail & Related papers (2024-10-07T04:15:48Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - Reconsidering utility: unveiling the limitations of synthetic mobility data generation algorithms in real-life scenarios [49.1574468325115]
We evaluate the utility of five state-of-the-art synthesis approaches in terms of real-world applicability.
We focus on so-called trip data that encode fine granular urban movements such as GPS-tracked taxi rides.
One model fails to produce data within reasonable time and another generates too many jumps to meet the requirements for map matching.
arXiv Detail & Related papers (2024-07-03T16:08:05Z) - XXLTraffic: Expanding and Extremely Long Traffic Dataset for Ultra-Dynamic Forecasting Challenges [3.7509821052818118]
XXLTraffic is the largest available public traffic dataset with the longest timespan and increasing number of sensor nodes.
Our dataset supplements existing-temporal data resources and leads to new research directions in this domain.
arXiv Detail & Related papers (2024-06-18T15:06:22Z) - PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
We propose a.
Federated Anomaly Detection framework named PeFAD with the increasing privacy concerns.
We conduct extensive evaluations on four real datasets, where PeFAD outperforms existing state-of-the-art baselines by up to 28.74%.
arXiv Detail & Related papers (2024-06-04T13:51:08Z) - Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
Long-term urban mobility predictions play a crucial role in the effective management of urban facilities and services.
Traditionally, urban mobility data has been structured as videos, treating longitude and latitude as fundamental pixels.
In our research, we introduce a fresh perspective on urban mobility prediction.
Instead of oversimplifying urban mobility data as traditional video data, we regard it as a complex time series.
arXiv Detail & Related papers (2023-12-04T07:39:05Z) - MemDA: Forecasting Urban Time Series with Memory-based Drift Adaptation [24.284969264008733]
We propose a new urban time series prediction model for the concept drift problem, which encodes the drift by considering the periodicity in the data.
Our design significantly outperforms state-of-the-art methods and can be well generalized to existing prediction backbones.
arXiv Detail & Related papers (2023-09-25T15:22:28Z) - Scaling Laws Do Not Scale [54.72120385955072]
Recent work has argued that as the size of a dataset increases, the performance of a model trained on that dataset will increase.
We argue that this scaling law relationship depends on metrics used to measure performance that may not correspond with how different groups of people perceive the quality of models' output.
Different communities may also have values in tension with each other, leading to difficult, potentially irreconcilable choices about metrics used for model evaluations.
arXiv Detail & Related papers (2023-07-05T15:32:21Z) - LargeST: A Benchmark Dataset for Large-Scale Traffic Forecasting [65.71129509623587]
Road traffic forecasting plays a critical role in smart city initiatives and has experienced significant advancements thanks to the power of deep learning.
However, the promising results achieved on current public datasets may not be applicable to practical scenarios.
We introduce the LargeST benchmark dataset, which includes a total of 8,600 sensors in California with a 5-year time coverage.
arXiv Detail & Related papers (2023-06-14T05:48:36Z) - Generating synthetic mobility data for a realistic population with RNNs
to improve utility and privacy [3.3918638314432936]
We present a system for generating synthetic mobility data using a deep recurrent neural network (RNN)
The system takes a population distribution as input and generates mobility traces for a corresponding synthetic population.
We show the generated mobility data retain the characteristics of the real data, while varying from the real data at the individual level.
arXiv Detail & Related papers (2022-01-04T13:58:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.