Polarimetric Multi-View Inverse Rendering
- URL: http://arxiv.org/abs/2007.08830v1
- Date: Fri, 17 Jul 2020 09:00:20 GMT
- Title: Polarimetric Multi-View Inverse Rendering
- Authors: Jinyu Zhao, Yusuke Monno, Masatoshi Okutomi
- Abstract summary: A polarization camera has great potential for 3D reconstruction since the angle of polarization (AoP) of reflected light is related to an object's surface normal.
We propose a novel 3D reconstruction method called Polarimetric Multi-View Inverse Rendering (Polarimetric MVIR) that exploits geometric, photometric, and polarimetric cues extracted from input multi-view color polarization images.
- Score: 13.391866136230165
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A polarization camera has great potential for 3D reconstruction since the
angle of polarization (AoP) of reflected light is related to an object's
surface normal. In this paper, we propose a novel 3D reconstruction method
called Polarimetric Multi-View Inverse Rendering (Polarimetric MVIR) that
effectively exploits geometric, photometric, and polarimetric cues extracted
from input multi-view color polarization images. We first estimate camera poses
and an initial 3D model by geometric reconstruction with a standard
structure-from-motion and multi-view stereo pipeline. We then refine the
initial model by optimizing photometric and polarimetric rendering errors using
multi-view RGB and AoP images, where we propose a novel polarimetric rendering
cost function that enables us to effectively constrain each estimated surface
vertex's normal while considering four possible ambiguous azimuth angles
revealed from the AoP measurement. Experimental results using both synthetic
and real data demonstrate that our Polarimetric MVIR can reconstruct a detailed
3D shape without assuming a specific polarized reflection depending on the
material.
Related papers
- NeRSP: Neural 3D Reconstruction for Reflective Objects with Sparse Polarized Images [62.752710734332894]
NeRSP is a Neural 3D reconstruction technique for Reflective surfaces with Sparse Polarized images.
We derive photometric and geometric cues from the polarimetric image formation model and multiview azimuth consistency.
We achieve the state-of-the-art surface reconstruction results with only 6 views as input.
arXiv Detail & Related papers (2024-06-11T09:53:18Z) - Polarimetric Multi-View Inverse Rendering [13.391866136230165]
A polarization camera has great potential for 3D reconstruction since the angle of polarization (AoP) and the degree of polarization (DoP) of reflected light are related to an object's surface normal.
We propose a novel 3D reconstruction method called Polarimetric Multi-View Inverse Rendering (Polarimetric MVIR) that effectively exploits geometric, photometric, and polarimetric cues extracted from input multi-view color-polarization images.
arXiv Detail & Related papers (2022-12-24T12:12:12Z) - PolarFormer: Multi-camera 3D Object Detection with Polar Transformers [93.49713023975727]
3D object detection in autonomous driving aims to reason "what" and "where" the objects of interest present in a 3D world.
Existing methods often adopt the canonical Cartesian coordinate system with perpendicular axis.
We propose a new Polar Transformer (PolarFormer) for more accurate 3D object detection in the bird's-eye-view (BEV) taking as input only multi-camera 2D images.
arXiv Detail & Related papers (2022-06-30T16:32:48Z) - Neural Radiance Fields Approach to Deep Multi-View Photometric Stereo [103.08512487830669]
We present a modern solution to the multi-view photometric stereo problem (MVPS)
We procure the surface orientation using a photometric stereo (PS) image formation model and blend it with a multi-view neural radiance field representation to recover the object's surface geometry.
Our method performs neural rendering of multi-view images while utilizing surface normals estimated by a deep photometric stereo network.
arXiv Detail & Related papers (2021-10-11T20:20:03Z) - Human Pose and Shape Estimation from Single Polarization Images [45.24275141578927]
We attempt to estimate human pose and shape from single polarization images by leveraging the polarization-induced geometric cues.
A dedicated dataset (PHSPD) is constructed, consisting of over 500K frames with accurate pose and shape annotations.
It suggests polarization camera as a promising alternative to the more conventional RGB camera for human pose and shape estimation.
arXiv Detail & Related papers (2021-08-15T22:56:18Z) - Deep Polarization Imaging for 3D shape and SVBRDF Acquisition [7.86578678811226]
We present a novel method for efficient acquisition of shape and spatially varying reflectance of 3D objects using polarization cues.
Unlike previous works that have exploited polarization to estimate material or object appearance under certain constraints, we lift such restrictions by coupling polarization imaging with deep learning.
We demonstrate our approach to achieve superior results compared to recent works employing deep learning in conjunction with flash illumination.
arXiv Detail & Related papers (2021-05-06T17:58:43Z) - Spectral MVIR: Joint Reconstruction of 3D Shape and Spectral Reflectance [15.600451871592107]
We present a rendering model that considers both geometric and photometric principles in the image formation.
We build a cost-optimization MVIR framework for the joint reconstruction of the 3D shape and the per-vertex spectral reflectance.
arXiv Detail & Related papers (2021-04-15T08:36:23Z) - Deep 3D Capture: Geometry and Reflectance from Sparse Multi-View Images [59.906948203578544]
We introduce a novel learning-based method to reconstruct the high-quality geometry and complex, spatially-varying BRDF of an arbitrary object.
We first estimate per-view depth maps using a deep multi-view stereo network.
These depth maps are used to coarsely align the different views.
We propose a novel multi-view reflectance estimation network architecture.
arXiv Detail & Related papers (2020-03-27T21:28:54Z) - Multi-View Photometric Stereo: A Robust Solution and Benchmark Dataset
for Spatially Varying Isotropic Materials [65.95928593628128]
We present a method to capture both 3D shape and spatially varying reflectance with a multi-view photometric stereo technique.
Our algorithm is suitable for perspective cameras and nearby point light sources.
arXiv Detail & Related papers (2020-01-18T12:26:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.