Glossy Object Reconstruction with Cost-effective Polarized Acquisition
- URL: http://arxiv.org/abs/2504.07025v1
- Date: Wed, 09 Apr 2025 16:38:51 GMT
- Title: Glossy Object Reconstruction with Cost-effective Polarized Acquisition
- Authors: Bojian Wu, Yifan Peng, Ruizhen Hu, Xiaowei Zhou,
- Abstract summary: This work introduces a scalable polarization-aided approach that employs cost-effective acquisition tools.<n>The proposed approach represents polarimetric BRDF, Stokes vectors, and polarization states of object surfaces as neural implicit fields.<n>By leveraging fundamental physical principles for the implicit representation of polarization rendering, our method demonstrates superiority over existing techniques.
- Score: 41.96986483856648
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The challenge of image-based 3D reconstruction for glossy objects lies in separating diffuse and specular components on glossy surfaces from captured images, a task complicated by the ambiguity in discerning lighting conditions and material properties using RGB data alone. While state-of-the-art methods rely on tailored and/or high-end equipment for data acquisition, which can be cumbersome and time-consuming, this work introduces a scalable polarization-aided approach that employs cost-effective acquisition tools. By attaching a linear polarizer to readily available RGB cameras, multi-view polarization images can be captured without the need for advance calibration or precise measurements of the polarizer angle, substantially reducing system construction costs. The proposed approach represents polarimetric BRDF, Stokes vectors, and polarization states of object surfaces as neural implicit fields. These fields, combined with the polarizer angle, are retrieved by optimizing the rendering loss of input polarized images. By leveraging fundamental physical principles for the implicit representation of polarization rendering, our method demonstrates superiority over existing techniques through experiments in public datasets and real captured images on both reconstruction and novel view synthesis.
Related papers
- PIDSR: Complementary Polarized Image Demosaicing and Super-Resolution [63.87900679891159]
The resolution of a polarization camera is often much lower than that of a conventional RGB camera.
Existing polarized image demosaicing (PID) methods are limited in that they cannot enhance resolution.
We propose PIDSR, a joint framework that performs complementary Polarized Image Demosaicing and Super-Resolution.
arXiv Detail & Related papers (2025-04-10T13:56:33Z) - Acquisition of Spatially-Varying Reflectance and Surface Normals via Polarized Reflectance Fields [15.653977591138682]
Accurately measuring the geometry and spatially-varying reflectance of real-world objects is a complex task.<n>We propose a novel approach using polarized reflectance field capture and a comprehensive statistical analysis algorithm.<n>We showcase the captured shapes and reflectance of diverse objects with a wide material range, spanning from highly diffuse to highly glossy.
arXiv Detail & Related papers (2024-12-13T00:39:55Z) - SS-SfP:Neural Inverse Rendering for Self Supervised Shape from (Mixed) Polarization [21.377923666134116]
Shape from Polarization (SfP) is the problem popularly known as Shape from Polarization (SfP)
We present a novel inverse rendering-based framework to estimate the 3D shape (per-pixel surface normals and depth) of objects and scenes from single-view polarization images.
arXiv Detail & Related papers (2024-07-12T14:29:00Z) - NeRSP: Neural 3D Reconstruction for Reflective Objects with Sparse Polarized Images [62.752710734332894]
NeRSP is a Neural 3D reconstruction technique for Reflective surfaces with Sparse Polarized images.
We derive photometric and geometric cues from the polarimetric image formation model and multiview azimuth consistency.
We achieve the state-of-the-art surface reconstruction results with only 6 views as input.
arXiv Detail & Related papers (2024-06-11T09:53:18Z) - NeISF: Neural Incident Stokes Field for Geometry and Material Estimation [50.588983686271284]
Multi-view inverse rendering is the problem of estimating the scene parameters such as shapes, materials, or illuminations from a sequence of images captured under different viewpoints.
We propose Neural Incident Stokes Fields (NeISF), a multi-view inverse framework that reduces ambiguities using polarization cues.
arXiv Detail & Related papers (2023-11-22T06:28:30Z) - Polarimetric Information for Multi-Modal 6D Pose Estimation of
Photometrically Challenging Objects with Limited Data [51.95347650131366]
6D pose estimation pipelines that rely on RGB-only or RGB-D data show limitations for photometrically challenging objects.
A supervised learning-based method utilising complementary polarisation information is proposed to overcome such limitations.
arXiv Detail & Related papers (2023-08-21T10:56:00Z) - Polarimetric Multi-View Inverse Rendering [13.391866136230165]
A polarization camera has great potential for 3D reconstruction since the angle of polarization (AoP) and the degree of polarization (DoP) of reflected light are related to an object's surface normal.
We propose a novel 3D reconstruction method called Polarimetric Multi-View Inverse Rendering (Polarimetric MVIR) that effectively exploits geometric, photometric, and polarimetric cues extracted from input multi-view color-polarization images.
arXiv Detail & Related papers (2022-12-24T12:12:12Z) - Self-calibrating Photometric Stereo by Neural Inverse Rendering [88.67603644930466]
This paper tackles the task of uncalibrated photometric stereo for 3D object reconstruction.
We propose a new method that jointly optimize object shape, light directions, and light intensities.
Our method demonstrates state-of-the-art accuracy in light estimation and shape recovery on real-world datasets.
arXiv Detail & Related papers (2022-07-16T02:46:15Z) - Sparse Ellipsometry: Portable Acquisition of Polarimetric SVBRDF and
Shape with Unstructured Flash Photography [32.68190169944569]
We present a portable polarimetric acquisition method that captures both polarimetric SVBRDF and 3D shape simultaneously.
Instead of days, the total acquisition time varies between twenty and thirty minutes per object.
Our results show a strong agreement with a recent ground-truth dataset of captured polarimetric BRDFs of real-world objects.
arXiv Detail & Related papers (2022-07-09T09:42:59Z) - DIB-R++: Learning to Predict Lighting and Material with a Hybrid
Differentiable Renderer [78.91753256634453]
We consider the challenging problem of predicting intrinsic object properties from a single image by exploiting differentiables.
In this work, we propose DIBR++, a hybrid differentiable which supports these effects by combining specularization and ray-tracing.
Compared to more advanced physics-based differentiables, DIBR++ is highly performant due to its compact and expressive model.
arXiv Detail & Related papers (2021-10-30T01:59:39Z) - Deep Polarization Imaging for 3D shape and SVBRDF Acquisition [7.86578678811226]
We present a novel method for efficient acquisition of shape and spatially varying reflectance of 3D objects using polarization cues.
Unlike previous works that have exploited polarization to estimate material or object appearance under certain constraints, we lift such restrictions by coupling polarization imaging with deep learning.
We demonstrate our approach to achieve superior results compared to recent works employing deep learning in conjunction with flash illumination.
arXiv Detail & Related papers (2021-05-06T17:58:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.