論文の概要: Distribution Aligning Refinery of Pseudo-label for Imbalanced
Semi-supervised Learning
- arxiv url: http://arxiv.org/abs/2007.08844v2
- Date: Mon, 13 Sep 2021 11:40:04 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-09 13:13:34.545732
- Title: Distribution Aligning Refinery of Pseudo-label for Imbalanced
Semi-supervised Learning
- Title(参考訳): 不均衡半教師あり学習のための擬似ラベルの分布調整
- Authors: Jaehyung Kim, Youngbum Hur, Sejun Park, Eunho Yang, Sung Ju Hwang and
Jinwoo Shin
- Abstract要約: Pseudo-label (DARP) アルゴリズムの分散アライメント・リファナリーを開発する。
DARPは最先端のSSLスキームと有効かつ効率的に互換性があることを示す。
- 参考スコア(独自算出の注目度): 126.31716228319902
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While semi-supervised learning (SSL) has proven to be a promising way for
leveraging unlabeled data when labeled data is scarce, the existing SSL
algorithms typically assume that training class distributions are balanced.
However, these SSL algorithms trained under imbalanced class distributions can
severely suffer when generalizing to a balanced testing criterion, since they
utilize biased pseudo-labels of unlabeled data toward majority classes. To
alleviate this issue, we formulate a convex optimization problem to softly
refine the pseudo-labels generated from the biased model, and develop a simple
algorithm, named Distribution Aligning Refinery of Pseudo-label (DARP) that
solves it provably and efficiently. Under various class-imbalanced
semi-supervised scenarios, we demonstrate the effectiveness of DARP and its
compatibility with state-of-the-art SSL schemes.
- Abstract(参考訳): 半教師付き学習(SSL)はラベル付きデータが不足している場合にラベル付けされていないデータを活用するための有望な方法であることが証明されているが、既存のSSLアルゴリズムは通常、トレーニングクラスの分散が均衡していると仮定する。
しかし、不均衡なクラス分布の下で訓練されたこれらのSSLアルゴリズムは、未ラベルデータのバイアス付き擬似ラベルを多数クラスに利用するため、バランスの取れたテスト基準に一般化する際に深刻な苦しむことがある。
そこで本研究では, 偏りモデルから生成した擬似ラベルをソフトに洗練するために凸最適化問題を定式化し, 有効かつ効率的に解く擬似ラベル(darp)の分布整列精製法(distribution aligning refinery of pseudo-label)という簡単なアルゴリズムを開発した。
各種のクラス不均衡半教師付きシナリオにおいて,DARPの有効性と最先端SSL方式との互換性を示す。
関連論文リスト
- Learning Label Refinement and Threshold Adjustment for Imbalanced Semi-Supervised Learning [6.904448748214652]
半教師付き学習アルゴリズムは、不均衡なトレーニングデータに晒された場合、うまく機能しない。
Validation Data(SEVAL)に基づく擬似ラベル最適化によるセミ教師あり学習について紹介する。
SEVALは、擬似ラベルの精度を改善して特定のタスクに適応し、クラスごとに擬似ラベルの正確性を保証する。
論文 参考訳(メタデータ) (2024-07-07T13:46:22Z) - Generalized Semi-Supervised Learning via Self-Supervised Feature Adaptation [87.17768598044427]
従来の半教師付き学習は、ラベル付きデータとラベルなしデータの特徴分布が一貫したものであると仮定する。
本稿では,ラベル付きおよびラベルなしデータの分散によるSSL性能向上のための汎用フレームワークであるセルフ・スーパービジョン・フィーチャー・アダプテーション(SSFA)を提案する。
提案するSSFAは擬似ラベルベースのSSL学習者に適用可能であり,ラベル付き,ラベルなし,さらには目に見えない分布における性能を著しく向上させる。
論文 参考訳(メタデータ) (2024-05-31T03:13:45Z) - A Channel-ensemble Approach: Unbiased and Low-variance Pseudo-labels is Critical for Semi-supervised Classification [61.473485511491795]
半教師付き学習(SSL)はコンピュータビジョンにおける実践的な課題である。
Pseudo-label (PL) メソッド、例えば FixMatch や FreeMatch は SSL で State of The Art (SOTA) のパフォーマンスを取得する。
本稿では,複数の下位PLを理論的に保証された非偏りと低分散のPLに集約する,軽量なチャネルベースアンサンブル法を提案する。
論文 参考訳(メタデータ) (2024-03-27T09:49:37Z) - Flexible Distribution Alignment: Towards Long-tailed Semi-supervised Learning with Proper Calibration [18.376601653387315]
Longtailed semi-supervised learning (LTSSL)は、半教師付きアプリケーションのための実践的なシナリオである。
この問題は、ラベル付きとラベルなしのクラス分布の相違によってしばしば悪化する。
本稿では,新しい適応ロジット調整型損失フレームワークFlexDAを紹介する。
論文 参考訳(メタデータ) (2023-06-07T17:50:59Z) - InPL: Pseudo-labeling the Inliers First for Imbalanced Semi-supervised
Learning [34.062061310242385]
不均衡半教師付き学習(SSL)のための疑似ラベルの新しい視点を提案する。
未表示のサンプルが「流通中」か「流通外」かを測定する。
実験により、我々のエネルギーベース擬似ラベル法である textbfInPL が、不均衡なSSLベンチマークにおいて信頼性ベースの手法よりも著しく優れていることが示された。
論文 参考訳(メタデータ) (2023-03-13T16:45:41Z) - An Embarrassingly Simple Baseline for Imbalanced Semi-Supervised
Learning [103.65758569417702]
半教師付き学習(SSL)は、ラベルのないデータを活用してモデルのパフォーマンスを向上させるという大きな約束を示している。
我々は、ラベル付きデータとラベルなしデータの両方で不均衡なクラス分散が発生する不均衡SSLという、より現実的で困難な設定について検討する。
我々は、ラベル付きデータを擬似ラベルで単純に補うことで、データの不均衡に取り組む単純なベースライン、SimiSについて研究する。
論文 参考訳(メタデータ) (2022-11-20T21:18:41Z) - Distribution-Aware Semantics-Oriented Pseudo-label for Imbalanced
Semi-Supervised Learning [80.05441565830726]
本稿では,疑似ラベルの重み付けがモデル性能に悪影響を及ぼすような,不均衡な半教師付き学習に対処する。
本稿では,この観測の動機となるバイアスに対処する,一般的な擬似ラベルフレームワークを提案する。
不均衡SSLのための新しい擬似ラベルフレームワークを、DASO(Distributed-Aware Semantics-Oriented Pseudo-label)と呼ぶ。
論文 参考訳(メタデータ) (2021-06-10T11:58:25Z) - In Defense of Pseudo-Labeling: An Uncertainty-Aware Pseudo-label
Selection Framework for Semi-Supervised Learning [53.1047775185362]
Pseudo-labeling (PL) は一般的な SSL アプローチで、この制約はありませんが、当初の処方では比較的不十分です。
PLは不整合モデルからの誤った高い信頼度予測により性能が低下していると論じる。
そこで本研究では,疑似ラベリング精度を向上させるための不確実性認識型擬似ラベル選択(ups)フレームワークを提案する。
論文 参考訳(メタデータ) (2021-01-15T23:29:57Z) - Class-Imbalanced Semi-Supervised Learning [33.94685366079589]
Semi-Supervised Learning (SSL)はラベル付けの難しさを克服し、ラベルなしデータを完全に活用することで大きな成功を収めている。
本稿では,クラス不均衡データを用いた半教師あり学習(CISSL)の課題を紹介する。
本手法はCISSL環境における従来の手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2020-02-17T07:48:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。