論文の概要: Region-based Non-local Operation for Video Classification
- arxiv url: http://arxiv.org/abs/2007.09033v5
- Date: Tue, 2 Feb 2021 00:21:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-09 14:14:14.770445
- Title: Region-based Non-local Operation for Video Classification
- Title(参考訳): ビデオ分類のための地域別非ローカル操作
- Authors: Guoxi Huang and Adrian G. Bors
- Abstract要約: 本稿では,地域別非局所的(RNL)操作を自己注意機構のファミリーとして提案する。
チャネルアテンションモジュールと提案したRNLを組み合わせることで,市販のCNNに組み込んだアテンションチェーンを設計し,エンドツーエンドのトレーニングを行う。
提案手法の実験結果は,他の注意機構よりも優れており,Something V1データセット上での最先端性能を実現している。
- 参考スコア(独自算出の注目度): 11.746833714322154
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Convolutional Neural Networks (CNNs) model long-range dependencies by deeply
stacking convolution operations with small window sizes, which makes the
optimizations difficult. This paper presents region-based non-local (RNL)
operations as a family of self-attention mechanisms, which can directly capture
long-range dependencies without using a deep stack of local operations. Given
an intermediate feature map, our method recalibrates the feature at a position
by aggregating the information from the neighboring regions of all positions.
By combining a channel attention module with the proposed RNL, we design an
attention chain, which can be integrated into the off-the-shelf CNNs for
end-to-end training. We evaluate our method on two video classification
benchmarks. The experimental results of our method outperform other attention
mechanisms, and we achieve state-of-the-art performance on the
Something-Something V1 dataset.
- Abstract(参考訳): 畳み込みニューラルネットワーク(cnns)は、小さなウィンドウサイズで畳み込み操作を深く積み重ねることで、長距離依存性をモデル化する。
本稿では,ローカル操作の深いスタックを使わずに,長距離依存関係を直接キャプチャできる自己注意機構のファミリーとして,地域ベースの非ローカル操作(RNL)を提案する。
中間特徴マップが与えられると、全ての位置の隣接領域から情報を集約することにより、その特徴を位置で再調整する。
チャネルアテンションモジュールと提案したRNLを組み合わせることで,市販のCNNに組み込んだアテンションチェーンを設計し,エンドツーエンドのトレーニングを行う。
本手法を2つのビデオ分類ベンチマークで評価する。
提案手法の実験結果は,他の注意機構よりも優れており,Something V1データセットの最先端性能を実現している。
関連論文リスト
- Single image super-resolution based on trainable feature matching attention network [0.0]
畳み込みニューラルネットワーク(CNN)は画像超解法(SR)に広く利用されている
トレーニング可能な特徴マッチング(TFM)を導入し、CNNに明示的な特徴学習を導入し、その表現能力を増強する。
また,非局所演算の計算要求を軽減するため,SRNL (Same-size-divided Region-level Non-Local) という変種も提案する。
論文 参考訳(メタデータ) (2024-05-29T08:31:54Z) - Adaptive Local-Component-aware Graph Convolutional Network for One-shot
Skeleton-based Action Recognition [54.23513799338309]
骨格に基づく行動認識のための適応的局所成分認識グラフ畳み込みネットワークを提案する。
我々の手法はグローバルな埋め込みよりも強力な表現を提供し、我々のモデルが最先端に到達するのに役立ちます。
論文 参考訳(メタデータ) (2022-09-21T02:33:07Z) - Direct Localization in Underwater Acoustics via Convolutional Neural
Networks: A Data-Driven Approach [31.399611901926583]
ダイレクトローカライゼーション(DLOC)法は、一般的に間接的な2段階法よりも優れている。
水中音響DLOC法は環境の事前の知識を必要とする。
そこで本研究では,データ駆動型DLOC法を提案する。
論文 参考訳(メタデータ) (2022-07-20T22:40:11Z) - Learning Implicit Feature Alignment Function for Semantic Segmentation [51.36809814890326]
Implicit Feature Alignment Function (IFA)は、暗黙の神経表現の急速に拡大するトピックにインスパイアされている。
IFAは機能マップを異なるレベルで暗黙的に整列し、任意の解像度でセグメンテーションマップを生成することができることを示す。
提案手法は,様々なアーキテクチャの改善と組み合わせて,一般的なベンチマークにおける最先端の精度のトレードオフを実現する。
論文 参考訳(メタデータ) (2022-06-17T09:40:14Z) - Attention in Attention: Modeling Context Correlation for Efficient Video
Classification [47.938500236792244]
本稿では,注目度向上のためのAIA手法を提案する。
ビデオ特徴コンテキストを,グローバル平均およびプール操作を伴う特定の軸に沿って集約されたダイナミックスとしてインスタンス化する。
注意ユニット内の全ての計算処理は、プール化された次元に作用し、計算コストの増大は極めて少ない。
論文 参考訳(メタデータ) (2022-04-20T08:37:52Z) - Local Augmentation for Graph Neural Networks [78.48812244668017]
本稿では,局所的な部分グラフ構造によりノード特性を向上する局所拡張を提案する。
局所的な拡張に基づいて、プラグイン・アンド・プレイ方式で任意のGNNモデルに適用可能な、LA-GNNという新しいフレームワークをさらに設計する。
論文 参考訳(メタデータ) (2021-09-08T18:10:08Z) - Global Aggregation then Local Distribution for Scene Parsing [99.1095068574454]
提案手法は,エンドツーエンドのトレーニング可能なブロックとしてモジュール化され,既存のセマンティックセグメンテーションネットワークに容易に接続可能であることを示す。
私たちのアプローチでは、Cityscapes、ADE20K、Pascal Context、Camvid、COCO-stuffといった主要なセマンティックセグメンテーションベンチマークに基づいて、新しい最先端の技術を構築できます。
論文 参考訳(メタデータ) (2021-07-28T03:46:57Z) - Clustered Federated Learning via Generalized Total Variation
Minimization [83.26141667853057]
本研究では,分散ネットワーク構造を持つローカルデータセットの局所的(あるいはパーソナライズされた)モデルを学習するための最適化手法について検討する。
我々の主要な概念的貢献は、総変動最小化(GTV)としてフェデレーション学習を定式化することである。
私たちのアルゴリズムの主な貢献は、完全に分散化されたフェデレーション学習アルゴリズムです。
論文 参考訳(メタデータ) (2021-05-26T18:07:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。