On regularization of gradient descent, layer imbalance and flat minima
- URL: http://arxiv.org/abs/2007.09286v1
- Date: Sat, 18 Jul 2020 00:09:14 GMT
- Title: On regularization of gradient descent, layer imbalance and flat minima
- Authors: Boris Ginsburg
- Abstract summary: We analyze the training dynamics for deep linear networks using a new metric - imbalance - which defines the flatness of a solution.
We demonstrate that different regularization methods, such as weight decay or noise data augmentation, behave in a similar way.
- Score: 9.08659783613403
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We analyze the training dynamics for deep linear networks using a new metric
- layer imbalance - which defines the flatness of a solution. We demonstrate
that different regularization methods, such as weight decay or noise data
augmentation, behave in a similar way. Training has two distinct phases: 1)
optimization and 2) regularization. First, during the optimization phase, the
loss function monotonically decreases, and the trajectory goes toward a minima
manifold. Then, during the regularization phase, the layer imbalance decreases,
and the trajectory goes along the minima manifold toward a flat area. Finally,
we extend the analysis for stochastic gradient descent and show that SGD works
similarly to noise regularization.
Related papers
- Discrete error dynamics of mini-batch gradient descent for least squares regression [4.159762735751163]
We study the dynamics of mini-batch gradient descent for at least squares when sampling without replacement.
We also study discretization effects that a continuous-time gradient flow analysis cannot detect, and show that minibatch gradient descent converges to a step-size dependent solution.
arXiv Detail & Related papers (2024-06-06T02:26:14Z) - Stable Nonconvex-Nonconcave Training via Linear Interpolation [51.668052890249726]
This paper presents a theoretical analysis of linearahead as a principled method for stabilizing (large-scale) neural network training.
We argue that instabilities in the optimization process are often caused by the nonmonotonicity of the loss landscape and show how linear can help by leveraging the theory of nonexpansive operators.
arXiv Detail & Related papers (2023-10-20T12:45:12Z) - Convergence of mean-field Langevin dynamics: Time and space
discretization, stochastic gradient, and variance reduction [49.66486092259376]
The mean-field Langevin dynamics (MFLD) is a nonlinear generalization of the Langevin dynamics that incorporates a distribution-dependent drift.
Recent works have shown that MFLD globally minimizes an entropy-regularized convex functional in the space of measures.
We provide a framework to prove a uniform-in-time propagation of chaos for MFLD that takes into account the errors due to finite-particle approximation, time-discretization, and gradient approximation.
arXiv Detail & Related papers (2023-06-12T16:28:11Z) - Aiming towards the minimizers: fast convergence of SGD for
overparametrized problems [25.077446336619378]
We propose a regularity regime which endows the gradient method with the same worst-case complexity as the gradient method.
All existing guarantees require the gradient method to take small steps, thereby resulting in a much slower linear rate of convergence.
We demonstrate that our condition holds when training sufficiently wide feedforward neural networks with a linear output layer.
arXiv Detail & Related papers (2023-06-05T05:21:01Z) - Implicit Bias in Leaky ReLU Networks Trained on High-Dimensional Data [63.34506218832164]
In this work, we investigate the implicit bias of gradient flow and gradient descent in two-layer fully-connected neural networks with ReLU activations.
For gradient flow, we leverage recent work on the implicit bias for homogeneous neural networks to show that leakyally, gradient flow produces a neural network with rank at most two.
For gradient descent, provided the random variance is small enough, we show that a single step of gradient descent suffices to drastically reduce the rank of the network, and that the rank remains small throughout training.
arXiv Detail & Related papers (2022-10-13T15:09:54Z) - Improved Convergence Rate of Stochastic Gradient Langevin Dynamics with
Variance Reduction and its Application to Optimization [50.83356836818667]
gradient Langevin Dynamics is one of the most fundamental algorithms to solve non-eps optimization problems.
In this paper, we show two variants of this kind, namely the Variance Reduced Langevin Dynamics and the Recursive Gradient Langevin Dynamics.
arXiv Detail & Related papers (2022-03-30T11:39:00Z) - Bilevel learning of l1-regularizers with closed-form gradients(BLORC) [8.138650738423722]
We present a method for supervised learning of sparsity-promoting regularizers.
The parameters are learned to minimize the mean squared error of reconstruction on a training set of ground truth signal and measurement pairs.
arXiv Detail & Related papers (2021-11-21T17:01:29Z) - Differentiable Annealed Importance Sampling and the Perils of Gradient
Noise [68.44523807580438]
Annealed importance sampling (AIS) and related algorithms are highly effective tools for marginal likelihood estimation.
Differentiability is a desirable property as it would admit the possibility of optimizing marginal likelihood as an objective.
We propose a differentiable algorithm by abandoning Metropolis-Hastings steps, which further unlocks mini-batch computation.
arXiv Detail & Related papers (2021-07-21T17:10:14Z) - Implicit Gradient Regularization [18.391141066502644]
gradient descent can be surprisingly good at optimizing deep neural networks without overfitting and without explicit regularization.
We call this Implicit Gradient Regularization (IGR) and we use backward error analysis to calculate the size of this regularization.
arXiv Detail & Related papers (2020-09-23T14:17:53Z) - Path Sample-Analytic Gradient Estimators for Stochastic Binary Networks [78.76880041670904]
In neural networks with binary activations and or binary weights the training by gradient descent is complicated.
We propose a new method for this estimation problem combining sampling and analytic approximation steps.
We experimentally show higher accuracy in gradient estimation and demonstrate a more stable and better performing training in deep convolutional models.
arXiv Detail & Related papers (2020-06-04T21:51:21Z) - The Implicit Bias of Gradient Descent on Separable Data [44.98410310356165]
We show the predictor converges to the direction of the max-margin (hard margin SVM) solution.
This can help explain the benefit of continuing to optimize the logistic or cross-entropy loss even after the training error is zero.
arXiv Detail & Related papers (2017-10-27T21:47:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.