Training Dynamics of Transformers to Recognize Word Co-occurrence via Gradient Flow Analysis
- URL: http://arxiv.org/abs/2410.09605v1
- Date: Sat, 12 Oct 2024 17:50:58 GMT
- Title: Training Dynamics of Transformers to Recognize Word Co-occurrence via Gradient Flow Analysis
- Authors: Hongru Yang, Bhavya Kailkhura, Zhangyang Wang, Yingbin Liang,
- Abstract summary: We study the dynamics of training a shallow transformer on a task of recognizing co-occurrence of two designated words.
We analyze the gradient flow dynamics of simultaneously training three attention matrices and a linear layer.
We prove a novel property of the gradient flow, termed textitautomatic balancing of gradients, which enables the loss values of different samples to decrease almost at the same rate and further facilitates the proof of near minimum training loss.
- Score: 97.54180451650122
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding the training dynamics of transformers is important to explain the impressive capabilities behind large language models. In this work, we study the dynamics of training a shallow transformer on a task of recognizing co-occurrence of two designated words. In the literature of studying training dynamics of transformers, several simplifications are commonly adopted such as weight reparameterization, attention linearization, special initialization, and lazy regime. In contrast, we analyze the gradient flow dynamics of simultaneously training three attention matrices and a linear MLP layer from random initialization, and provide a framework of analyzing such dynamics via a coupled dynamical system. We establish near minimum loss and characterize the attention model after training. We discover that gradient flow serves as an inherent mechanism that naturally divide the training process into two phases. In Phase 1, the linear MLP quickly aligns with the two target signals for correct classification, whereas the softmax attention remains almost unchanged. In Phase 2, the attention matrices and the MLP evolve jointly to enlarge the classification margin and reduce the loss to a near minimum value. Technically, we prove a novel property of the gradient flow, termed \textit{automatic balancing of gradients}, which enables the loss values of different samples to decrease almost at the same rate and further facilitates the proof of near minimum training loss. We also conduct experiments to verify our theoretical results.
Related papers
- Can Looped Transformers Learn to Implement Multi-step Gradient Descent for In-context Learning? [69.4145579827826]
We show a fast flow on the regression loss despite the gradient non-ity algorithms for our convergence landscape.
This is the first theoretical analysis for multi-layer Transformer in this setting.
arXiv Detail & Related papers (2024-10-10T18:29:05Z) - Non-asymptotic Convergence of Training Transformers for Next-token Prediction [48.9399496805422]
Transformers have achieved extraordinary success in modern machine learning due to their excellent ability to handle sequential data.
This paper provides a fine-grained non-asymptotic analysis of the training dynamics of a one-layer transformer.
We show that the trained transformer presents non-token prediction ability with dataset shift.
arXiv Detail & Related papers (2024-09-25T20:22:06Z) - Geometric Dynamics of Signal Propagation Predict Trainability of
Transformers [22.25628914395565]
We investigate forward signal propagation and gradient back propagation in deep, randomly transformers.
Our approach treats the evolution of $n tokens as they propagate through the transformer layers.
We show through experiments that, remarkably, the final test loss at the end of training is well predicted just by these two exponents.
arXiv Detail & Related papers (2024-03-05T01:30:34Z) - Training Dynamics of Multi-Head Softmax Attention for In-Context Learning: Emergence, Convergence, and Optimality [54.20763128054692]
We study the dynamics of gradient flow for training a multi-head softmax attention model for in-context learning of multi-task linear regression.
We prove that an interesting "task allocation" phenomenon emerges during the gradient flow dynamics.
arXiv Detail & Related papers (2024-02-29T18:43:52Z) - Transformers Learn Nonlinear Features In Context: Nonconvex Mean-field Dynamics on the Attention Landscape [40.78854925996]
Large language models based on the Transformer architecture have demonstrated impressive ability to learn in context.
We show that a common nonlinear representation or feature map can be used to enhance power of in-context learning.
arXiv Detail & Related papers (2024-02-02T09:29:40Z) - In-Context Convergence of Transformers [63.04956160537308]
We study the learning dynamics of a one-layer transformer with softmax attention trained via gradient descent.
For data with imbalanced features, we show that the learning dynamics take a stage-wise convergence process.
arXiv Detail & Related papers (2023-10-08T17:55:33Z) - Transformers learn in-context by gradient descent [58.24152335931036]
Training Transformers on auto-regressive objectives is closely related to gradient-based meta-learning formulations.
We show how trained Transformers become mesa-optimizers i.e. learn models by gradient descent in their forward pass.
arXiv Detail & Related papers (2022-12-15T09:21:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.