Deep Learning of High-Order Interactions for Protein Interface
Prediction
- URL: http://arxiv.org/abs/2007.09334v1
- Date: Sat, 18 Jul 2020 05:39:35 GMT
- Title: Deep Learning of High-Order Interactions for Protein Interface
Prediction
- Authors: Yi Liu, Hao Yuan, Lei Cai and Shuiwang Ji
- Abstract summary: We propose to formulate the protein interface prediction as a 2D dense prediction problem.
We represent proteins as graphs and employ graph neural networks to learn node features.
We incorporate high-order pairwise interactions to generate a 3D tensor containing different pairwise interactions.
- Score: 58.164371994210406
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Protein interactions are important in a broad range of biological processes.
Traditionally, computational methods have been developed to automatically
predict protein interface from hand-crafted features. Recent approaches employ
deep neural networks and predict the interaction of each amino acid pair
independently. However, these methods do not incorporate the important
sequential information from amino acid chains and the high-order pairwise
interactions. Intuitively, the prediction of an amino acid pair should depend
on both their features and the information of other amino acid pairs. In this
work, we propose to formulate the protein interface prediction as a 2D dense
prediction problem. In addition, we propose a novel deep model to incorporate
the sequential information and high-order pairwise interactions to perform
interface predictions. We represent proteins as graphs and employ graph neural
networks to learn node features. Then we propose the sequential modeling method
to incorporate the sequential information and reorder the feature matrix. Next,
we incorporate high-order pairwise interactions to generate a 3D tensor
containing different pairwise interactions. Finally, we employ convolutional
neural networks to perform 2D dense predictions. Experimental results on
multiple benchmarks demonstrate that our proposed method can consistently
improve the protein interface prediction performance.
Related papers
- SFM-Protein: Integrative Co-evolutionary Pre-training for Advanced Protein Sequence Representation [97.99658944212675]
We introduce a novel pre-training strategy for protein foundation models.
It emphasizes the interactions among amino acid residues to enhance the extraction of both short-range and long-range co-evolutionary features.
Trained on a large-scale protein sequence dataset, our model demonstrates superior generalization ability.
arXiv Detail & Related papers (2024-10-31T15:22:03Z) - PLA-SGCN: Protein-Ligand Binding Affinity Prediction by Integrating Similar Pairs and Semi-supervised Graph Convolutional Network [6.024776891570197]
This paper aims to integrate retrieved hard protein-ligand pairs in PLA prediction (i.e., task prediction step) using a semi-supervised graph convolutional network (GCN)
The results show that the proposed method significantly performs better than the comparable approaches.
arXiv Detail & Related papers (2024-05-13T03:27:02Z) - Improved K-mer Based Prediction of Protein-Protein Interactions With
Chaos Game Representation, Deep Learning and Reduced Representation Bias [0.0]
We present a method for extracting unique pairs from an interaction dataset, generating non-redundant paired data for unbiased machine learning.
We develop a convolutional neural network model capable of learning and predicting interactions from Chaos Game Representations of proteins' coding genes.
arXiv Detail & Related papers (2023-10-23T10:02:23Z) - DeepGATGO: A Hierarchical Pretraining-Based Graph-Attention Model for
Automatic Protein Function Prediction [4.608328575930055]
Automatic protein function prediction (AFP) is classified as a large-scale multi-label classification problem.
Currently, popular methods primarily combine protein-related information and Gene Ontology (GO) terms to generate final functional predictions.
We propose a sequence-based hierarchical prediction method, DeepGATGO, which processes protein sequences and GO term labels hierarchically.
arXiv Detail & Related papers (2023-07-24T07:01:32Z) - EquiPocket: an E(3)-Equivariant Geometric Graph Neural Network for Ligand Binding Site Prediction [49.674494450107005]
Predicting the binding sites of target proteins plays a fundamental role in drug discovery.
Most existing deep-learning methods consider a protein as a 3D image by spatially clustering its atoms into voxels.
This work proposes EquiPocket, an E(3)-equivariant Graph Neural Network (GNN) for binding site prediction.
arXiv Detail & Related papers (2023-02-23T17:18:26Z) - HAC-Net: A Hybrid Attention-Based Convolutional Neural Network for
Highly Accurate Protein-Ligand Binding Affinity Prediction [0.0]
We present a novel deep learning architecture consisting of a 3-dimensional convolutional neural network and two graph convolutional networks.
HAC-Net obtains state-of-the-art results on the PDBbind v.2016 core set.
We envision that this model can be extended to a broad range of supervised learning problems related to structure-based biomolecular property prediction.
arXiv Detail & Related papers (2022-12-23T16:14:53Z) - Pre-training Co-evolutionary Protein Representation via A Pairwise
Masked Language Model [93.9943278892735]
Key problem in protein sequence representation learning is to capture the co-evolutionary information reflected by the inter-residue co-variation in the sequences.
We propose a novel method to capture this information directly by pre-training via a dedicated language model, i.e., Pairwise Masked Language Model (PMLM)
Our result shows that the proposed method can effectively capture the interresidue correlations and improves the performance of contact prediction by up to 9% compared to the baseline.
arXiv Detail & Related papers (2021-10-29T04:01:32Z) - Structure-aware Interactive Graph Neural Networks for the Prediction of
Protein-Ligand Binding Affinity [52.67037774136973]
Drug discovery often relies on the successful prediction of protein-ligand binding affinity.
Recent advances have shown great promise in applying graph neural networks (GNNs) for better affinity prediction by learning the representations of protein-ligand complexes.
We propose a structure-aware interactive graph neural network (SIGN) which consists of two components: polar-inspired graph attention layers (PGAL) and pairwise interactive pooling (PiPool)
arXiv Detail & Related papers (2021-07-21T03:34:09Z) - EBM-Fold: Fully-Differentiable Protein Folding Powered by Energy-based
Models [53.17320541056843]
We propose a fully-differentiable approach for protein structure optimization, guided by a data-driven generative network.
Our EBM-Fold approach can efficiently produce high-quality decoys, compared against traditional Rosetta-based structure optimization routines.
arXiv Detail & Related papers (2021-05-11T03:40:29Z) - Interpretable Structured Learning with Sparse Gated Sequence Encoder for
Protein-Protein Interaction Prediction [2.9488233765621295]
Predicting protein-protein interactions (PPIs) by learning informative representations from amino acid sequences is a challenging yet important problem in biology.
We present a novel deep framework to model and predict PPIs from sequence alone.
Our model incorporates a bidirectional gated recurrent unit to learn sequence representations by leveraging contextualized and sequential information from sequences.
arXiv Detail & Related papers (2020-10-16T17:13:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.