HAC-Net: A Hybrid Attention-Based Convolutional Neural Network for
Highly Accurate Protein-Ligand Binding Affinity Prediction
- URL: http://arxiv.org/abs/2212.12440v4
- Date: Tue, 28 Mar 2023 21:07:31 GMT
- Title: HAC-Net: A Hybrid Attention-Based Convolutional Neural Network for
Highly Accurate Protein-Ligand Binding Affinity Prediction
- Authors: Gregory W. Kyro, Rafael I. Brent, Victor S. Batista
- Abstract summary: We present a novel deep learning architecture consisting of a 3-dimensional convolutional neural network and two graph convolutional networks.
HAC-Net obtains state-of-the-art results on the PDBbind v.2016 core set.
We envision that this model can be extended to a broad range of supervised learning problems related to structure-based biomolecular property prediction.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Applying deep learning concepts from image detection and graph theory has
greatly advanced protein-ligand binding affinity prediction, a challenge with
enormous ramifications for both drug discovery and protein engineering. We
build upon these advances by designing a novel deep learning architecture
consisting of a 3-dimensional convolutional neural network utilizing
channel-wise attention and two graph convolutional networks utilizing
attention-based aggregation of node features. HAC-Net (Hybrid Attention-Based
Convolutional Neural Network) obtains state-of-the-art results on the PDBbind
v.2016 core set, the most widely recognized benchmark in the field. We
extensively assess the generalizability of our model using multiple train-test
splits, each of which maximizes differences between either protein structures,
protein sequences, or ligand extended-connectivity fingerprints of complexes in
the training and test sets. Furthermore, we perform 10-fold cross-validation
with a similarity cutoff between SMILES strings of ligands in the training and
test sets, and also evaluate the performance of HAC-Net on lower-quality data.
We envision that this model can be extended to a broad range of supervised
learning problems related to structure-based biomolecular property prediction.
All of our software is available as open source at
https://github.com/gregory-kyro/HAC-Net/, and the HACNet Python package is
available through PyPI.
Related papers
- Target-aware Variational Auto-encoders for Ligand Generation with
Multimodal Protein Representation Learning [2.01243755755303]
We introduce TargetVAE, a target-aware auto-encoder that generates with high binding affinities to arbitrary protein targets.
This is the first effort to unify different representations of proteins into a single model that we name as Protein Multimodal Network (PMN)
arXiv Detail & Related papers (2023-08-02T12:08:17Z) - Linear-scaling kernels for protein sequences and small molecules
outperform deep learning while providing uncertainty quantitation and
improved interpretability [5.623232537411766]
We develop efficient and scalable approaches for fitting GP models and fast convolution kernels.
We implement these improvements by building an open-source Python library called xGPR.
We show that xGPR generally outperforms convolutional neural networks on predicting key properties of proteins and small molecules.
arXiv Detail & Related papers (2023-02-07T07:06:02Z) - Neural Attentive Circuits [93.95502541529115]
We introduce a general purpose, yet modular neural architecture called Neural Attentive Circuits (NACs)
NACs learn the parameterization and a sparse connectivity of neural modules without using domain knowledge.
NACs achieve an 8x speedup at inference time while losing less than 3% performance.
arXiv Detail & Related papers (2022-10-14T18:00:07Z) - Structure-aware Interactive Graph Neural Networks for the Prediction of
Protein-Ligand Binding Affinity [52.67037774136973]
Drug discovery often relies on the successful prediction of protein-ligand binding affinity.
Recent advances have shown great promise in applying graph neural networks (GNNs) for better affinity prediction by learning the representations of protein-ligand complexes.
We propose a structure-aware interactive graph neural network (SIGN) which consists of two components: polar-inspired graph attention layers (PGAL) and pairwise interactive pooling (PiPool)
arXiv Detail & Related papers (2021-07-21T03:34:09Z) - Probabilistic Graph Attention Network with Conditional Kernels for
Pixel-Wise Prediction [158.88345945211185]
We present a novel approach that advances the state of the art on pixel-level prediction in a fundamental aspect, i.e. structured multi-scale features learning and fusion.
We propose a probabilistic graph attention network structure based on a novel Attention-Gated Conditional Random Fields (AG-CRFs) model for learning and fusing multi-scale representations in a principled manner.
arXiv Detail & Related papers (2021-01-08T04:14:29Z) - Deep Learning of High-Order Interactions for Protein Interface
Prediction [58.164371994210406]
We propose to formulate the protein interface prediction as a 2D dense prediction problem.
We represent proteins as graphs and employ graph neural networks to learn node features.
We incorporate high-order pairwise interactions to generate a 3D tensor containing different pairwise interactions.
arXiv Detail & Related papers (2020-07-18T05:39:35Z) - The Heterogeneity Hypothesis: Finding Layer-Wise Differentiated Network
Architectures [179.66117325866585]
We investigate a design space that is usually overlooked, i.e. adjusting the channel configurations of predefined networks.
We find that this adjustment can be achieved by shrinking widened baseline networks and leads to superior performance.
Experiments are conducted on various networks and datasets for image classification, visual tracking and image restoration.
arXiv Detail & Related papers (2020-06-29T17:59:26Z) - Improved Protein-ligand Binding Affinity Prediction with Structure-Based
Deep Fusion Inference [3.761791311908692]
Predicting accurate protein-ligand binding affinity is important in drug discovery.
Recent advances in the deep convolutional and graph neural network based approaches, the model performance depends on the input data representation.
We present fusion models to benefit from different feature representations of two neural network models to improve the binding affinity prediction.
arXiv Detail & Related papers (2020-05-17T22:26:27Z) - Binarizing MobileNet via Evolution-based Searching [66.94247681870125]
We propose a use of evolutionary search to facilitate the construction and training scheme when binarizing MobileNet.
Inspired by one-shot architecture search frameworks, we manipulate the idea of group convolution to design efficient 1-Bit Convolutional Neural Networks (CNNs)
Our objective is to come up with a tiny yet efficient binary neural architecture by exploring the best candidates of the group convolution.
arXiv Detail & Related papers (2020-05-13T13:25:51Z) - Energy-based Graph Convolutional Networks for Scoring Protein Docking
Models [19.09624358779376]
Two problems in protein docking are regarded as relative and absolute scoring, respectively, and addressed in one physics-inspired deep learning framework.
We propose a novel graph convolutional kernel that pool interacting nodes' features through edge features so that generalized interaction energies can be learned directly from graph data.
The resulting energy-based graph convolutional networks (EGCN) with multi-head attention are trained to predict intra- and inter-molecular energies, binding affinities, and quality measures (interface RMSD) for encounter complexes.
arXiv Detail & Related papers (2019-12-28T15:57:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.