論文の概要: Understanding Spatial Relations through Multiple Modalities
- arxiv url: http://arxiv.org/abs/2007.09551v1
- Date: Sun, 19 Jul 2020 01:35:08 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-08 23:50:38.065022
- Title: Understanding Spatial Relations through Multiple Modalities
- Title(参考訳): 複数モーダリティによる空間関係の理解
- Authors: Soham Dan, Hangfeng He, Dan Roth
- Abstract要約: オブジェクト間の空間的関係は、空間的前置詞として表されるか、移動、歩行、移動などの空間的動詞によって表される。
画像中の2つの実体間の暗黙的・明示的な空間的関係を推定するタスクを導入する。
本研究では、テキスト情報と視覚情報の両方を用いて空間関係を予測し、物体の位置情報と大きさ情報と画像埋め込みを利用するモデルを設計する。
- 参考スコア(独自算出の注目度): 78.07328342973611
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recognizing spatial relations and reasoning about them is essential in
multiple applications including navigation, direction giving and human-computer
interaction in general. Spatial relations between objects can either be
explicit -- expressed as spatial prepositions, or implicit -- expressed by
spatial verbs such as moving, walking, shifting, etc. Both these, but implicit
relations in particular, require significant common sense understanding. In
this paper, we introduce the task of inferring implicit and explicit spatial
relations between two entities in an image. We design a model that uses both
textual and visual information to predict the spatial relations, making use of
both positional and size information of objects and image embeddings. We
contrast our spatial model with powerful language models and show how our
modeling complements the power of these, improving prediction accuracy and
coverage and facilitates dealing with unseen subjects, objects and relations.
- Abstract(参考訳): ナビゲーション,方向付与,人間とコンピュータのインタラクションなど,複数のアプリケーションにおいて空間的関係の認識と推論が不可欠である。
オブジェクト間の空間的関係は、空間的前置詞として表されるか、移動、歩行、移動などの空間的動詞によって表される。
これらの両者、特に暗黙の関係は、大きな常識理解を必要とする。
本稿では,画像内の2つの実体間の暗黙的および明示的な空間的関係を推測するタスクを提案する。
本研究では、テキスト情報と視覚情報の両方を用いて空間関係を予測し、物体の位置情報と大きさ情報と画像埋め込みを利用するモデルを設計する。
我々は、空間モデルと強力な言語モデルを比較し、モデリングがこれらの力をどのように補完するかを示し、予測精度と範囲を改善し、目に見えない対象、対象、関係を扱うのを容易にする。
関連論文リスト
- Hire: Hybrid-modal Interaction with Multiple Relational Enhancements for Image-Text Matching [7.7559623054251]
画像テキストマッチング(ITM)はコンピュータビジョンの基本的な問題である。
画像テキストマッチングのためのマルチエンハンスメント(termed textitHire)を用いたハイブリッドモーダル機能を提案する。
特に、明示的なモーダル空間意味グラフに基づく推論ネットワークは、視覚オブジェクトの文脈表現を改善するために設計されている。
論文 参考訳(メタデータ) (2024-06-05T13:10:55Z) - Semantic-guided modeling of spatial relation and object co-occurrence for indoor scene recognition [5.083140094792973]
SpaCoNetは、セマンティックセグメンテーションによって導かれるオブジェクトの空間的関係と共起を同時にモデル化する。
広範に利用されている3つのシーンデータセットの実験結果から,提案手法の有効性と汎用性を示す。
論文 参考訳(メタデータ) (2023-05-22T03:04:22Z) - Benchmarking Spatial Relationships in Text-to-Image Generation [102.62422723894232]
本研究では,オブジェクト間の空間的関係を正確に生成するテキスト・ツー・イメージモデルについて検討する。
画像中にテキストで記述された空間関係がどれだけ正確に生成されるかを測定する評価指標であるVISORを提案する。
我々の実験では、最先端のT2Iモデルは高画質であるが、複数のオブジェクトを生成できる能力や、それらの間の空間的関係が著しく制限されていることが判明した。
論文 参考訳(メタデータ) (2022-12-20T06:03:51Z) - Language Conditioned Spatial Relation Reasoning for 3D Object Grounding [87.03299519917019]
自然言語に基づく3Dシーンにおけるオブジェクトのローカライズには,空間的関係の理解と推論が必要である。
本稿では,3次元オブジェクトとその空間関係をグラウンド化するための言語条件付きトランスフォーマーモデルを提案する。
論文 参考訳(メタデータ) (2022-11-17T16:42:39Z) - Things not Written in Text: Exploring Spatial Commonsense from Visual
Signals [77.46233234061758]
視覚信号を持つモデルがテキストベースモデルよりも空間的コモンセンスを学習するかどうかを検討する。
本稿では,オブジェクトの相対スケールと,異なる動作下での人とオブジェクトの位置関係に着目したベンチマークを提案する。
画像合成モデルは,他のモデルよりも正確で一貫した空間知識を学習できることがわかった。
論文 参考訳(メタデータ) (2022-03-15T17:02:30Z) - Spatio-Temporal Interaction Graph Parsing Networks for Human-Object
Interaction Recognition [55.7731053128204]
ビデオに基づくヒューマンオブジェクトインタラクションシーンでは、人間とオブジェクトの時間的関係をモデル化することが、ビデオに提示されるコンテキスト情報を理解するための重要な手がかりである。
実効時間関係モデリングでは、各フレームの文脈情報を明らかにするだけでなく、時間間の依存関係を直接キャプチャすることもできる。
外観特徴、空間的位置、意味情報のフル活用は、ビデオベースのヒューマンオブジェクトインタラクション認識性能を改善する鍵でもある。
論文 参考訳(メタデータ) (2021-08-19T11:57:27Z) - SIRI: Spatial Relation Induced Network For Spatial Description
Resolution [64.38872296406211]
言語誘導型ローカライゼーションのための新しい関係誘導型ネットワーク(SIRI)を提案する。
提案手法は,80ピクセルの半径で測定した精度で,最先端手法よりも約24%優れていた。
提案手法は,Touchdownと同じ設定で収集した拡張データセットをうまく一般化する。
論文 参考訳(メタデータ) (2020-10-27T14:04:05Z) - Intrinsic Relationship Reasoning for Small Object Detection [44.68289739449486]
画像やビデオの小さなオブジェクトは通常、独立した個人ではない。その代わりに、意味的および空間的レイアウトの関係を多かれ少なかれ提示する。
本稿では,オブジェクト間の固有意味と空間的レイアウトの関係をモデル化し,推論する,小さなオブジェクト検出のための新しいコンテキスト推論手法を提案する。
論文 参考訳(メタデータ) (2020-09-02T06:03:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。