論文の概要: An Overview of Natural Language State Representation for Reinforcement
Learning
- arxiv url: http://arxiv.org/abs/2007.09774v1
- Date: Sun, 19 Jul 2020 20:15:55 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-09 00:17:06.342737
- Title: An Overview of Natural Language State Representation for Reinforcement
Learning
- Title(参考訳): 強化学習のための自然言語状態表現の概観
- Authors: Brielen Madureira and David Schlangen
- Abstract要約: 適切な状態表現は、強化学習における学習プロセスの基本的な部分である。
この調査は、自然言語の状態表現を構築するために文献で使用される戦略の概要である。
- 参考スコア(独自算出の注目度): 17.285206913252786
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A suitable state representation is a fundamental part of the learning process
in Reinforcement Learning. In various tasks, the state can either be described
by natural language or be natural language itself. This survey outlines the
strategies used in the literature to build natural language state
representations. We appeal for more linguistically interpretable and grounded
representations, careful justification of design decisions and evaluation of
the effectiveness of different approaches.
- Abstract(参考訳): 適切な状態表現は強化学習における学習プロセスの基本部分である。
様々なタスクにおいて、状態は自然言語で記述するか、自然言語自身で記述することができる。
この調査は、自然言語状態表現を構築するために文献で使われる戦略の概要を示す。
我々は、より言語的に解釈可能で基礎的な表現、設計決定の慎重な正当化、異なるアプローチの有効性の評価を訴える。
関連論文リスト
- Learning telic-controllable state representations [3.072340427031969]
本稿では,有界エージェントにおける状態表現学習のための新しい計算フレームワークを提案する。
我々の研究は、自然エージェントと人工エージェントの目標指向状態表現学習に関する統一的な理論的視点を推し進めている。
論文 参考訳(メタデータ) (2024-06-20T16:38:25Z) - Learning Language Structures through Grounding [8.437466837766895]
言語構造を基礎として学習することを目的とした機械学習タスクのファミリーを考察する。
パートIでは,視覚的接地を通して構文解析を学習することを検討する。
第2部では文を対応する意味構造にマッピングする2つの実行対応手法を提案する。
パートIIIでは、他の言語のアノテーションから言語構造を学習する手法を提案する。
論文 参考訳(メタデータ) (2024-06-14T02:21:53Z) - Learning with Language-Guided State Abstractions [58.199148890064826]
高次元観測空間における一般化可能なポリシー学習は、よく設計された状態表現によって促進される。
我々の手法であるLGAは、自然言語の監視と言語モデルからの背景知識を組み合わせて、目に見えないタスクに適した状態表現を自動構築する。
シミュレーションされたロボットタスクの実験では、LGAは人間によって設計されたものと同様の状態抽象化をもたらすが、そのほんの少しの時間で得られる。
論文 参考訳(メタデータ) (2024-02-28T23:57:04Z) - BabySLM: language-acquisition-friendly benchmark of self-supervised
spoken language models [56.93604813379634]
音声表現を学習するための自己指導技術は、人間のラベルを必要とせずに、音声への露出から言語能力を高めることが示されている。
語彙および構文レベルで音声言語モデルを探索するために,言語習得に親しみやすいベンチマークを提案する。
テキストと音声のギャップを埋めることと、クリーンな音声とその内話のギャップを埋めることである。
論文 参考訳(メタデータ) (2023-06-02T12:54:38Z) - Natural Language Decompositions of Implicit Content Enable Better Text
Representations [56.85319224208865]
本稿では,暗黙的に伝達されたコンテンツを明示的に考慮したテキスト分析手法を提案する。
我々は大きな言語モデルを用いて、観察されたテキストと推論的に関係する命題の集合を生成する。
本研究は,NLPにおいて,文字のみではなく,観察された言語の背景にある意味をモデル化することが重要であることを示唆する。
論文 参考訳(メタデータ) (2023-05-23T23:45:20Z) - Language Models as Inductive Reasoners [125.99461874008703]
本稿では,帰納的推論のための新しいパラダイム(タスク)を提案し,自然言語の事実から自然言語規則を誘導する。
タスクのための1.2kルールファクトペアを含むデータセットDEERを作成し,ルールと事実を自然言語で記述する。
我々は、事前訓練された言語モデルが自然言語の事実から自然言語規則をいかに誘導できるかを、初めてかつ包括的な分析を行う。
論文 参考訳(メタデータ) (2022-12-21T11:12:14Z) - An Inclusive Notion of Text [69.36678873492373]
テキストの概念の明確さは再現可能で一般化可能なNLPにとって不可欠である,と我々は主張する。
言語的および非言語的要素の2層分類を導入し,NLPモデリングに使用することができる。
論文 参考訳(メタデータ) (2022-11-10T14:26:43Z) - Transparency Helps Reveal When Language Models Learn Meaning [71.96920839263457]
合成データを用いた体系的な実験により,すべての表現が文脈に依存しない意味を持つ言語では,自己回帰型とマスキング型の両方の言語モデルが,表現間の意味的関係をエミュレートする。
自然言語に目を向けると、特定の現象(参照不透明さ)による実験は、現在の言語モデルが自然言語の意味論をうまく表現していないという証拠を増大させる。
論文 参考訳(メタデータ) (2022-10-14T02:35:19Z) - A Multilingual Perspective Towards the Evaluation of Attribution Methods
in Natural Language Inference [28.949004915740776]
本稿では,自然言語推論(NLI)タスクに対する帰属的手法を評価するための多言語的手法を提案する。
まず,単語アライメントに基づいて忠実度を測定するための新たな言語間戦略を導入する。
次に、異なる出力機構と集約手法を考慮し、帰属手法の包括的な評価を行う。
論文 参考訳(メタデータ) (2022-04-11T22:11:05Z) - Sentiment Analysis with Contextual Embeddings and Self-Attention [3.0079490585515343]
自然言語では、単語や句の意図された意味はしばしば暗黙的であり、文脈に依存する。
本稿では,文脈埋め込みと自己認識機構を用いた感情分析の簡易かつ効果的な手法を提案する。
形態学的にリッチなポーランド語とドイツ語を含む3つの言語の実験結果から、我々のモデルは最先端のモデルに匹敵するか、さらに優れています。
論文 参考訳(メタデータ) (2020-03-12T02:19:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。