論文の概要: Deep Image Clustering with Category-Style Representation
- arxiv url: http://arxiv.org/abs/2007.10004v1
- Date: Mon, 20 Jul 2020 11:20:35 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-08 13:04:50.535734
- Title: Deep Image Clustering with Category-Style Representation
- Title(参考訳): カテゴリ表現を用いた深部画像クラスタリング
- Authors: Junjie Zhao, Donghuan Lu, Kai Ma, Yu Zhang, Yefeng Zheng
- Abstract要約: 本稿では,カテゴリスタイルの潜在表現を学習するための新しいディープ・イメージ・クラスタリング・フレームワークを提案する。
提案手法は,5つの公開データセットにおいて,最先端手法を著しく上回ることを示す。
- 参考スコア(独自算出の注目度): 30.960578987765707
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep clustering which adopts deep neural networks to obtain optimal
representations for clustering has been widely studied recently. In this paper,
we propose a novel deep image clustering framework to learn a category-style
latent representation in which the category information is disentangled from
image style and can be directly used as the cluster assignment. To achieve this
goal, mutual information maximization is applied to embed relevant information
in the latent representation. Moreover, augmentation-invariant loss is employed
to disentangle the representation into category part and style part. Last but
not least, a prior distribution is imposed on the latent representation to
ensure the elements of the category vector can be used as the probabilities
over clusters. Comprehensive experiments demonstrate that the proposed approach
outperforms state-of-the-art methods significantly on five public datasets.
- Abstract(参考訳): 近年,ディープニューラルネットワークを用いてクラスタリングの最適な表現を得るディープクラスタリングが広く研究されている。
本稿では,カテゴリ情報をイメージスタイルから切り離し,クラスタ割り当てとして直接使用できるカテゴリスタイルの潜在表現を学習するための,新しいディープ・イメージ・クラスタリング・フレームワークを提案する。
この目的を達成するために、潜在表現に関連情報を埋め込むために相互情報最大化を適用する。
さらに、その表現をカテゴリ部とスタイル部とに切り離すために拡張不変損失を用いる。
最後に、最後に、カテゴリベクトルの要素がクラスタ上の確率として使用できることを保証するために、潜在表現に事前分布が課される。
総合的な実験により、提案手法は5つの公開データセット上で最先端の手法を大幅に上回ることを示した。
関連論文リスト
- Neural Clustering based Visual Representation Learning [61.72646814537163]
クラスタリングは、機械学習とデータ分析における最も古典的なアプローチの1つである。
本稿では,特徴抽出をデータから代表者を選択するプロセスとみなすクラスタリング(FEC)による特徴抽出を提案する。
FECは、個々のクラスタにピクセルをグループ化して抽象的な代表を配置し、現在の代表とピクセルの深い特徴を更新する。
論文 参考訳(メタデータ) (2024-03-26T06:04:50Z) - Reinforcement Graph Clustering with Unknown Cluster Number [91.4861135742095]
本稿では,Reinforcement Graph Clusteringと呼ばれる新しいディープグラフクラスタリング手法を提案する。
提案手法では,クラスタ数決定と教師なし表現学習を統一的なフレームワークに統合する。
フィードバック動作を行うために、クラスタリング指向の報酬関数を提案し、同一クラスタの凝集を高め、異なるクラスタを分離する。
論文 参考訳(メタデータ) (2023-08-13T18:12:28Z) - XCon: Learning with Experts for Fine-grained Category Discovery [4.787507865427207]
本稿では,XCon(Expert-Contrastive Learning)と呼ばれる新しい手法を提案する。
細粒度データセットを用いた実験では,従来の最適手法よりも明らかに改善された性能を示し,本手法の有効性を示した。
論文 参考訳(メタデータ) (2022-08-03T08:03:12Z) - DeepCluE: Enhanced Image Clustering via Multi-layer Ensembles in Deep
Neural Networks [53.88811980967342]
本稿では,Ensembles (DeepCluE) を用いたDeep Clusteringを提案する。
ディープニューラルネットワークにおける複数のレイヤのパワーを活用することで、ディープクラスタリングとアンサンブルクラスタリングのギャップを埋める。
6つの画像データセットの実験結果から、最先端のディープクラスタリングアプローチに対するDeepCluEの利点が確認されている。
論文 参考訳(メタデータ) (2022-06-01T09:51:38Z) - Clustering by Maximizing Mutual Information Across Views [62.21716612888669]
本稿では,共同表現学習とクラスタリングを組み合わせた画像クラスタリングのための新しいフレームワークを提案する。
提案手法は,様々な画像データセットにおける最先端の単一ステージクラスタリング手法よりも優れていた。
論文 参考訳(メタデータ) (2021-07-24T15:36:49Z) - Learning the Precise Feature for Cluster Assignment [39.320210567860485]
表現学習とクラスタリングを1つのパイプラインに初めて統合するフレームワークを提案する。
提案フレームワークは,近年開発された生成モデルを用いて,本質的な特徴を学習する能力を活用している。
実験の結果,提案手法の性能は,最先端の手法よりも優れているか,少なくとも同等であることがわかった。
論文 参考訳(メタデータ) (2021-06-11T04:08:54Z) - Graph Contrastive Clustering [131.67881457114316]
本稿では,クラスタリングタスクに適用可能な新しいグラフコントラスト学習フレームワークを提案し,gcc(graph constrastive clustering)法を考案した。
特に、グラフラプラシアンに基づくコントラスト損失は、より識別的かつクラスタリングフレンドリーな特徴を学ぶために提案されている。
一方で、よりコンパクトなクラスタリング割り当てを学ぶために、グラフベースのコントラスト学習戦略が提案されている。
論文 参考訳(メタデータ) (2021-04-03T15:32:49Z) - Deep adaptive fuzzy clustering for evolutionary unsupervised
representation learning [2.8028128734158164]
大規模で複雑な画像のクラスタ割り当ては、パターン認識とコンピュータビジョンにおいて重要かつ困難な作業です。
反復最適化による新しい進化的教師なし学習表現モデルを提案する。
ファジィメンバシップを利用して深層クラスタ割り当ての明確な構造を表現するディープリコンストラクションモデルに対して,共同でファジィクラスタリングを行った。
論文 参考訳(メタデータ) (2021-03-31T13:58:10Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
既存のスケーラブルな階層的クラスタリング手法は、スピードの質を犠牲にする。
我々は、品質を犠牲にせず、数十億のデータポイントまでスケールする、スケーラブルで集約的な階層的クラスタリング法を提案する。
論文 参考訳(メタデータ) (2020-10-22T15:58:35Z) - Consensus Clustering With Unsupervised Representation Learning [4.164845768197489]
我々はBootstrap Your Own Latent(BYOL)のクラスタリング能力について検討し、BYOLを使って学習した機能がクラスタリングに最適でないことを観察する。
本稿では,新たなコンセンサスクラスタリングに基づく損失関数を提案するとともに,クラスタリング能力を改善し,類似のクラスタリングに基づく手法より優れたBYOLをエンド・ツー・エンドで学習する。
論文 参考訳(メタデータ) (2020-10-03T01:16:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。